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Background 

Stocking of fish is a common practice throughout the UK, aimed at supporting wild 
populations and/or enhancing stocks for angler activities. There are concerns, however, that 
stocking may cause undue risks to the ecological functioning of water bodies, potentially 
leading to a loss of biodiversity and altered ecological status. Of particular concern are shifts 
in food web structure and trophic status that may occur following stocking of carnivorous 
species, and the impacts that this will have upon indigenous flora and fauna. This has 
serious implications for water bodies that are designated natural heritage sites. This report 
examines the potential impacts of stocking and introducing fish into open waters, with 
particular reference to designated natural heritage sites in Scotland. In addition, significant 
hazards are identified for which further research is required, and management guidelines to 
deal with potential problems are provided. 

The aim of this project was to review the science that underpins guidelines already in place 
in the UK and Europe, with a view to developing guidance to safeguard designated natural 
heritage sites in Scotland. This project was also intended to contribute towards on-going 
discussions on ‘A Code of Good Practice’ for fishery managers and research elements of the 
Scottish Freshwater Fisheries Framework. The overall objective of the project was to 
undertake a hazard analysis and develop an advice support tool for Scottish Natural 
Heritage (SNH) to respond to consultations on fish stocking applications. 

 

Main findings 

 The potential risks associated with fish stock enhancement to native salmon, trout, charr, 
whitefish and lamprey populations, invertebrate and macrophyte species, and ecosystem 
functioning as a whole, are numerous. The main hazards are predation by stocked or 
introduced fishes, competition with stocked or introduced fishes, increased prevalance of 
disease and spread of non-native organisms, disruption of the native gene pool and 
eutrophication. 

 Stocked or introduced fishes pose a direct threat through predation. Stocking of trout has 
been implicated in the decline or disappearance of many native fish species through 
direct predation and increased densities of stocked fishes may encourage larger numbers 
of piscivorous birds feeding on the stocked and wild fishes. 

 Predation by stocked or introduced fishes may also have an influence on both nutrient 
budgets and ecosystem functioning in general. It can potentially raise nutrient levels 
(especially phosphorus) due to increased standing crop of fishes and by virtue of the 
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higher numbers of fishes feeding upon terrestrial organisms. Stocking benthic feeders 
such as carp can increase turbidity and mobilise nutrients and cause eutrophication.  

 Predation on native fishes or preferential feeding of stocked fish on certain taxa can result 
in a switch in trophic states through disruption of food chains/webs, e.g. by grazing 
pressure on zooplankton. 

 Stocked or introduced fishes pose a direct risk to native salmon, trout, charr and whitefish 
populations through a variety of competive interactions. This can be through 
displacement of native fishes through aggressive behaviour, competition for food 
resources and habitat with stocked fish resulting in reduced growth, survival, reproductive 
potential or energetic performance of native fishes. Overstocking can also lead to 
reduction in fishery performance through competitive bottlenecks. 

 Stocking may result in genetic drift and dilution of gene pool, loss of genetic diversity and 
hybridisation. This is particularly pertinent where native stocks exhibit adaptation towards 
particular environments and stocking could lead to loss of fitness manifest as differences 
in growth potential, age at maturity, fecundity, and can have implications for coevolution 
and adaptation processes. 

 Stocked fish also carry a risk of increased disease prevalence through tramission of 
pathogens. Care must be taken to ensure that other non-native, non target organisms are 
not introduced as part of the stock enhancement programme - this includes due diligence 
when exchanging water during transportation and when the fish are stocked into the 
receiving water body.   

 

Recommendations 

 It is recommended that where designated species are restricted to a small number of 
sites, introducing and, to a lesser extent, stocking fish, including trout, should be 
prohibited or restricted to safeguard populations.  

 Where it is possible to remove or minimise the causes of declines in fisheries, habitat 
improvement is the most desirable option because it should lead to long-term sustainable 
improvements with minimal deleterious ecological impacts. 

 It is recommended that generic codes of practice (as provided in Appendix 1) are followed 
meticulously, to ensure the risks associated with stocking or introducing fish or other 
aquatic organisms are evaluated and the correct decisions made to native biota. 

 Much of the current information about stock enhancement remains fragmented and poorly 
documented, and fully elucidating the direct impacts of fish stock enhancement on 
designated natural heritage sites remains a matter of judgement. To improve this 
scenario, further research is required, including: 

 What is the relative frequency of piscivory and zooplanktivory in stocked or 
introduced trout, and the impacts that these feeding strategies (and zooplanktivory by 
coarse fishes) have upon nutrient cycling, trophic cascade and ecosystem 
functioning? 

 What are the relative risks of stocked or introduced fish competing with wild fish, and 
affecting the viability of wild populations as well as the indirect risks to invertebrates, 
nutrient status and ecosystem functioning? 

 Regarding ecosystem functioning, the key area that requires further research is the 
impacts of gradual, chronic increases in nutrient availability on the relative 
productivity of macrophytes and phytoplankton, together with concurrent shifts in 
invertebrate community structure and biodiversity in general. This area of research is 
required to address the possibility of alterations in ecosystem functioning via 
competition-induced shifts in food-web structure caused by stock enhancement 
activities. 
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1. Background 

The stocking, translocation and introduction of fishes are frequently used by fisheries 
owners, managers and scientists throughout the world in an attempt to improve the quantity 
or quality of catches and provide long-term beneficial effects on fish stocks (Cowx, 1994a, b 
1998a; Welcomme, 1988). Many thousands of stocking events, involving millions of 
individual fishes, take place annually in managed fisheries (Hickley, 1994). In some cases, 
stocking programmes may be justified; for example, to compensate for losses caused by 
pollution (Aprahamian et al., 2003). Recently, however, there have been concerns about the 
potential risks associated with stocking and introducing fishes, particularly with respect to 
ecosystem functioning, changes in community structure and losses of genetic integrity 
(Cowx, 1997; McGinnity et al., 1997, 2003; Cowx & Gerdeaux, 2004; Casal, 2006; Eby et al., 
2006). Of particular concern are shifts in food-web structure and trophic status that may 
occur, and the impacts that these could have on indigenous flora and fauna. In addition, 
stocking or introductions may lead to competition with or predation on indigenous biota 
(Hickley & Chare, 2004; van Zyll de Jong et al., 2004): this can have serious implications for 
water bodies that are part of designated sites or support protected plant or animal species. 

There is, therefore, a need for fisheries managers to be aware of the possible impacts of 
stock enhancement programmes, both in terms of the effects on ecosystem functioning and 
the likelihood of improvements in stocks. Unfortunately, information on the impacts of stock 
enhancement programmes is sparse, largely because of a lack of systematic monitoring and 
dissemination of information on the outcomes. Furthermore, although large sums of money 
have been invested in stocking activities, relatively few programmes have been properly 
evaluated and there is little evidence to suggest that stock enhancement exercises lead to 
tangible long-term benefits (Cowx, 1998a; Arlinghaus et al., 2002). Weaknesses in success 
of many programmes appear to result from indiscriminate stocking without well-defined 
objectives or prior appraisal of the likelihood of success. Notwithstanding, if stocking 
programmes are designed to achieve defined objectives and to be implemented following 
best-practice guidance, it should be possible to improve success rates and minimise or 
mitigate any detrimental effects. It should also be possible to identify situations when, 
because of risks to the wider ecosystem, it is inappropriate to undertake stock enhancement 
programmes.  In the industrialised world, the most successful stock enhancement 
programmes have generally been associated with put-and-take and intensively stocked 
stillwater fisheries; stocking river fisheries has been less successful except perhaps where 
stocking has been used to establish populations or accelerate recovery (e.g. Bolland et al., 
2009). The most successful enhancement programmes in developing countries have mostly 
been associated with reservoir fisheries that have been heavily stocked to increase yield. 

Legislation came into force on 1 August 2008 that regulates the introduction (i.e. stocking) of 
all species of freshwater fish, native and non-native, within Scotland. Specifically, Section 35 
of the Aquaculture and Fisheries (Scotland) Act (2007) inserted a new section, 33A, into the 
Salmon and Freshwater Fisheries (Consolidation) (Scotland) Act (2003). This makes it an 
offence for any person to intentionally introduce any live fish or the spawn of any fish into 
inland waters, or possess such with the intention of introduction without previous written 
agreement from the appropriate authority. The principal aim of the new provisions was to 
protect native biodiversity from the potential consequences of introducing non-native fishes 
into Scottish fresh waters. The provisions apply to all freshwater species, including Atlantic 
salmon (Salmo salar L.), sea trout (Salmo trutta L.), and coarse (i.e. non-salmonid) fishes. 

The provisions are implemented through the relevant District Salmon Fishery Board (DSFB) 
when the fish to be introduced are Atlantic salmon or sea trout (Salmo trutta L.), and through 
Marine Scotland Science (MSS) where a DSFB does not operate or where the fish being 
introduced are not Atlantic salmon or sea trout (e.g. brown trout (S. trutta) from hatcheries or 
coarse fishes to still waters). Any licence application for an introduction that may adversely 
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affect a Site of Special Scientific Interest (SSSI), Special Protection Area (SPA) or Special 
Area of Conservation (SAC) requires full consultation with Scottish Natural Heritage (SNH).  

In this context, SNH has no specific policy in place for the introduction of freshwater fish to 
inland waters. However, in their response to Marine Scotland consultation document entitled: 
A Strategic Framework for Scottish Freshwater Fisheries, SNH outlined its broad objectives 
for supporting the conservation of wild fish and their habitats, along with the highest 
standards in their management, operation and promotion of the associated fisheries.  These 
objectives are: 

 To maintain self-sustaining populations of native fish, within their natural distribution, 
and to protect their natural genetic diversity by safeguarding local populations;  

 To maintain fisheries which operate in a manner consistent with natural heritage 
objectives, and which accommodate other recreational users of aquatic ecosystems;  

 To manage fish stocks on an individual catchment basis, working as far as possible 
with natural processes;  

 To secure the survival of Scottish wild fish populations and communities of particular 
natural heritage importance by protecting key water bodies;  

 To re-establish populations of native fish species in certain key areas where severe 
declines or extinctions have occurred;  

 To prevent introduction or translocation to the wild of fish of species or types not 
native to that water body, except where the water body is isolated from the natural 
heritage network and not of natural heritage importance;  

 To encourage anglers, fishery managers and owners, and those using water for other 
recreational purposes, to recognise each others’ rights and responsibilities and to co-
operate in developing national and local strategies for protection and management;  

 To recognise the relationship between fish, fisheries and the ecosystems upon which 
they depend, and promote an ecosystem-based approach to fish and fishery 
management; and 

 To promote the development of evidence-based stocking practices. This is 
particularly important given that recent evidence suggests that many current stocking 
practices can be damaging to native fish stocks. 

SNH’s primary concerns relating to the introduction of freshwater fish are: 

a) The risk of modifying the genetic diversity that exists within wild populations, in a way 
that will make local populations less suited to their host environment in the long-term 
through cross breeding (introgression);  

b) The potential to increase competition between introduced and wild fish populations if 
the numbers of fish added to the waterbody exceed its carrying capacity; 

c) The potential to Increase the risk of predation by introduced fish on either native fish 
or other aquatic biota of conservation value; 

d) Possible impacts on water quality by, for example, the selective removal of 
zooplankton by introduced fish, the disturbance of river or loch sediments;   

e) Risks to biosecurity and the spread of disease, parasites and invasive non-native 
species; 

f) The possibility of increasing the rate of exploitation of natural populations of fish, by 
man and other predators. 

Unfortunately, information on the impacts of stocking or introducing fishes into water bodies 
designated for conservation purposes is disparate and needs collating to support the 
development of guidelines to aid decisions on whether or not stockings should take place. 
The aim of this project is to review the science that underpins guidelines already in 
place in the UK and Europe, with a view to developing guidance to safeguard sites 
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designated for nature conservation in Scotland. This is also intended to contribute 
towards on-going discussions on A Code of Good Practice for fishery managers and 
research elements of the Scottish Freshwater Fisheries Framework. The overall 
objective of the project is to undertake a hazard analysis and develop a decision-support tool 
for SNH to respond to consultations on fish stocking applications that may impact upon 
designated natural heritage sites. The guidance is, whenever possible, based on robust 
science and considers: 

 the types of consultation that SNH may receive related to the introduction or stocking 
of freshwater fishes to designated natural heritage sites, including: 
 proposals to introduce/stock brown trout and rainbow trout (Oncorhynchus mykiss 

(Walbaum)) into stillwaters; 
 proposals to introduce/stock brown trout into running waters; and 
 proposals to introduce/stock coarse fishes into stillwaters. 

 natural heritage issues related to fish introductions, at generic and specific scales, 
including: 
 still waters designated as SSSIs or SACs for their habitats, including macrophyte 

assemblages; and  
 running waters designated as SSSIs or SACs for interests including habitat, 

Atlantic salmon and other fishes, freshwater pearl mussel and macrophytes. 

 prevention/mitigation of adverse impacts in relation to the above. 
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2. METHODOLOGY 

2.1 Definitions 

Inland fisheries are underpinned by a complex interaction of physical, chemical and 
biological conditions which need to be regulated in such a manner as to enhance the fishery 
output and maintain quality fishing. There are three broad types of approaches to fisheries 
management (Blankenship & Leber, 1995; Cowx & Gerdeaux, 2004).  

 Traditional management control tools commonly applied to regulate fishing including 
gear and size restrictions, seasonal closures, quotas and bag limits, and limitations on 
entry, taxes, levies and property rights.  

 Habitat rehabilitation tools to increase or recover available habitat and/or access to key 
habitat for at least some life stages of a target species (see Cowx & Welcomme, 
1998). Such an approach may range from increased connectivity along a river (fish 
passage facilities), through habitat restoration to the installation of artificial habitats 
(such as low weirs or groynes).  

 Stock enhancement referred to as the manipulation of the fish stocks by addition of a 
particular species to improve the fishery productivity (catch rates) or diversity of the 
fishery. Stock enhancement is widely popular due to its perceived simplicity 
(Welcomme & Bartley, 1998a, b). This aspect of stock enhancement is the focus of the 
remainder of this report, but it is important to recognise that stock enhancement is 
not the sole mechanism for improvement of stocks, as indicated above, this will be 
considered further in Section 4. 

2.1.1 Objectives of stock enhancement 

Stock enhancement is a commonly used measure for management of inland fisheries in use 
today. Most countries apply stock enhancement measures to some degree, in recognition 
that more conventional approaches to management have failed to control fisheries 
exploitation. It is also used to respond to depleted natural fish populations as a result of 
habitat degradation, or simply just to increase the fish stocks. In this context, stocking is an 
attempt to fix a problem, either real or perceived, or simply to increase stock abundance. 
Depending on the problem, stocking can be considered to be either a permanent or 
temporary solution. It can generally be divided into six main categories that match the 
Environment Agency’s (EA) ‘Work Instructions on Fish Stocking and Removal and on 
Administering and Determining Fish Movement Consents’, although a number of 
terminologies are applied throughout the fisheries sector (Table 1; modified from Molony et 
al., 2003).  

Mitigation or compensation 

This encompasses stocking with fish carried out as a voluntary exercise or statutory function 
to compensate for a disturbance caused by human activities against lost production. A loss 
in fish production may be attributed to a scheme or activity that cannot be prevented or 
removed, such as construction of reservoirs, power stations, barrages and impassable 
barriers, land drainage works or similar habitat perturbations. However, where stocked fish 
are released into unaffected parts of the river catchment or lake, the impact on the wild 
stocks in these areas must be considered.  
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Table 1. Range of terms used to describe stock enhancement activities (modified from 
Molony et al., 2003). 

Term Definition Source(s) 
Restocking   
Mitigation Production and release of fish to restore 

stock to original levels 
Radtke & Davis 
(2000) 

Stock enhancement Supplementing natural recruitment with 
injection of external material 

Ziemann (2001) 

Ocean ranching Releasing of fish to the ocean to be 
subsequently commercially harvested 

Arnason (2001) 

Marine ranching Production of early life-stages of species in a 
hatchery for eventual release into natural or 
modified habitats 

Bartley (1999) 

Stock enhancement 
recovery  

Production and release of fish for inter-
generational benefit 

Harada & Matsumiya 
(1992) 

 

Augmentation 
  

Augmentation  Production and release of fish to complement 
natural recruitment where available habitat is 
below carrying capacity 

Cowx (1994b), Bartley 
(1999) 

Habitat 
enhancement 

Production and release of fish to (re)colonise 
new/artificial habitats 

Young (1999) 

Mitigation  Stocking of fish into new/modified habitat to 
compensate for a decrease in a fishery 

Cowx (1994b), Bartley 
(1999) 

 

Addition 
  

Community change  Production and release of exotic fish to 
create new fisheries 

Cowx (1994b), Bartley 
(1999) 

Addition Stocking of a new species into an area 
outside of its natural range  

Rowland (1994) 

Enhance Production and release of fish to create new 
fisheries  

Petr (1998) 

 

Other terms 
  

Stock enhancement  Production and release of fish for public good Drawbridge (2002) 
Sea ranching Production and release of fish for common 

good  
Drawbridge (2002) 

Stock enhancement 
continuous 

Production and release of fish for intra-
generational benefit 

Harada & Matsumiya 
(1992) 

Enhance Production and release of fish to increase 
stocks above original levels 

Radtke & Davis 
(2000) 

Many of the traditional, long-term stocking programmes are carried out for mitigation or 
compensation. In such cases, stocking is often viewed as a long term solution (i.e. it must be 
done on a continual, usually annual, basis) and is unlikely to lead to the establishment of a 
self-sustaining natural population because the underlying reason for the stocking has not 
been addressed. The degree to which the fishery is dependent on stocking depends on the 
extent of ecosystem modification and can range from ‘total’, where the native stock would 
disappear without support, to ‘partial’, where the stock would be reduced to a proportion of 
that which might be expected if the system was unimpacted. 

Restoration 

Stocking for restoration is carried out after a limiting factor on stock recovery or improvement 
has been removed or reduced. An example may be a long-term improvement in water 
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quality, habitat improvements, the easing of passage for migratory fish or a reduction in 
fishing pressure. All restoration stocking must be based on reliable evidence that such 
populations existed in that catchment, or waterbody, in the past. 

Restoration stocking should generally not take place until defined limiting factors have been 
removed or ameliorated. However, situations may exist where it is necessary to initiate 
stocking in parallel with other habitat or fisheries management actions. Used in parallel, this 
can accelerate the stock recovery and/or to secure continued support for the restoration. 
Stocking programmes of this type should be a temporary measure and require a more active 
management strategy for the aquatic ecosystem and its fish populations. The ultimate 
objective is to create a fish stock and aquatic ecosystem that is self-sustaining. 

Enhancement 

Enhancement stocking is the principal method used to maintain or improve stocks where 
production is actually, or perceived to be, less than the water body could potentially sustain. 
Often, the reasons for the poor stocks cannot be identified and/or removed, or there is a 
desire to increase populations (usually for exploitation) to levels greater than those that can 
be achieved naturally. Typically, this type of stocking is used where those exploiting the 
fishery have expressed dissatisfaction with the quality of fishing, or to enhance stocks in 
sections of river where access is restricted by in-stream barriers. It also includes activities 
carried out to strengthen the quality and quantity of the spawning stock of a given species so 
as to improve natural reproduction potential. This can be for improvement of yield from a 
fishery or for conservation purposes where the natural breeding component is considered 
inadequate to maintain the stock at sustainable levels (see below).  

The majority of stocking activity within the UK probably falls into this category and it is, in the 
main, driven by concerns about the quality of angling experienced in a given location. 
However, in many cases the assessment of the state of the stock has been unduly 
pessimistic. This often results from a poor understanding of natural fluctuations in fish 
abundance or unrealistically high expectations as to what levels of natural production can 
actually be achieved. As natural production can often already be limited or driven by natural 
population cycles, or if fish are already resource limited for food or space, then it is unlikely 
that stocking will have a beneficial long-term effect. 

When stocking for enhancement is considered a long term, on-going solution, it can be 
defined as ‘ranching’ (supplementing natural juvenile recruitment through the growth of 
stocked fish) or, in the case of sport fishing, ‘put-and-take’ (stocking of fish into a water body 
for the express purposes of catching and removing for consumption). As a permanent 
solution, the strategy requires continuous application to maintain the desired fishery. 
Enhancement stocking is particularly favoured where there is a desire to introduce a species 
to a fishery and the species is unable to sustain itself naturally. Typical of this in the UK are 
the stocking of rainbow trout. 

Conservation 

Many fish species are under considerable threat from extinction, and stocking can be used 
to maintain these species. This is generally confined to those fish species or populations that 
are considered rare or threatened, including salmon, coregonids (Coregonus albula (L.), C. 
lavaretus (L.)), Arctic charr (Salvelinus alpinus (L.)) and European eel (Anguilla anguilla (L.)). 
This can be similar to mitigation stocking, but is usually more preservationist in its intent. 
Conservation stocking best takes place in areas where the threat of extinction no longer 
exists. Conservation stocking is also used to enhance populations of other fauna that 
depend on fish stocks (e.g. otters and bitterns). Stocking for conservation purposes should 
ideally be conducted in accordance with IUCN Translocation Guidelines, which protect the 
fauna of any receiving waterbody. The guidelines used by UK Conservation Agencies, which 
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based on the IUCN guidelines, are provided by the Joint Nature Conservation Committee 
(JNCC) (http://jncc.defra.gov.uk/pdf/species_policy.pdf ). 

Creation of new fisheries 

Where introductions are made as a management tool for commercial and recreational 
fisheries, the aim is to introduce new fish species for one of the following reasons: 

 Establish new fisheries that are more resistant to fishing pressure or have greater market 
value than fisheries for native species. In recreational fisheries, new species are introduced 
to improve the variety available to anglers, or to include a species of particular trophy or 
sporting value into an area. Stocking fish into a newly created water, e.g. a redundant 
gravel pit, also falls into this category. 

 Fill a vacant niche where existing fish species do not fully utilise the trophic and spatial 
resources available. In some natural waters evolutionary isolation has resulted in there 
being few native species, as in the UK and Ireland where faunas have been eliminated 
through glaciation. More commonly, the desire for introductions arises as a consequence 
of human activities. For example, many new reservoirs lack native species capable of fully 
colonising lentic waters. It is important to note, however, that naturally fishless water 
bodies can have an important conservation value because of their diversity of non-fish 
species and foodwebs. 

Accidental introductions (of non-native species) into natural waters may also be important, 
either through escapes from captivity (e.g. aquaculture facilities) or colonisation by wild 
populations of non-native species.  

Scientific Investigations 

Stocking can, on some occasions, be used as a tool to investigate fisheries management 
issues. Stocking can be a useful method of investigating the carrying capacity of the habitat, 
fish migration and behaviour.  

2.2 Hazard identification and assessment  

The first step was to review the literature and other materials related to interactions between 
stocked and wild fishes and other aquatic organisms, and the impacts of stocking and 
introductions on ecosystem functioning. Many of these characteristics were reviewed in two 
Environment Agency (EA) and two Natural England (NE) projects (Noble et al., 2004; Cowx 
et al., 2006, 2007; Nunn et al., 2006), but were updated to incorporate new developments 
and specifically to consider the impacts of stocking in designated natural heritage sites. The 
review used the following resources: 

 electronic search engines such as Web of Science (WoS) and Aquatic Sciences & 
Fisheries Abstracts (ASFA) to search for literature published since 1970; 

 electronic search engines such as JStor and Scopus to search for literature published 
prior to 1970; 

 information, particularly in the grey literature, from the extensive network of experts 
involved in the European Inland Fisheries Advisory Commission (EIFAC) and 
counterparts and colleagues in Europe and North America; 

 local operational investigations and national projects undertaken by government 
agencies that were pertinent to delivering the outputs of this project; and 

 the extensive collection of material held by the authors as part of on-going activities 
associated with inland fisheries and fish conservation. 

The information was collated and consolidated into a review that summarises pertinent 
information relevant to the project. The review specifically: 
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 investigated the links between fish stocking/introductions to various types of water 
bodies and possible changes to ecological and trophic status that may arise; 

 assessed if stocking/introductions pose a threat to fish and invertebrate assemblages or 
species, or macrophyte communities, and which species might be at risk and under 
which circumstances; 

 assessed the likely impacts from stocking/introducing fishes into waters containing native 
salmon, trout, charr, whitefish or lamprey populations; 

 determined how stocking/introductions might cause impacts on fish species or habitats of 
high conservation value and water body trophic level through shifts in ecosystem 
functioning. 

This information was used to assess the potential magnitude of the problems posed by stock 
enhancement for the protection of designated natural heritage sites, their biodiversity and 
ecosystem functioning. Economic and societal risks did not form part of this review, although 
the implications on these factors have been commented on within this report. In particular, 
the work for this review built on the EU “Environmental Impacts of Alien Species in 
Aquaculture” (IMPASSE) project that undertook a comprehensive review of the impacts of 
non-native fish species in aquaculture and developed full risk-assessment and decision-
support frameworks to underpin EC Council Regulation 708/2007 concerning the “Use of 
alien and locally-absent species in aquaculture”. 

2.3 Preparation of guidelines and assessment of knowledge gaps  

The first part of the assessment identifies the priority hazards and risks that arise from stock 
enhancement programmes. This is used as input to drafting potential guidelines for use by 
SNH in their decision-making framework for consideration of stocking proposals on 
designated natural heritage sites.  The output of the first part of the assessment identified 
gaps in knowledge and risks that require further assessment or research and development. 
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3. IDENTIFICATION AND ASSESSMENT OF HAZARDS AND RISKS RELATED TO 
THE STOCKING AND INTRODUCTION OF FRESHWATER FISHES TO 
DESIGNATED NATURAL HERITAGE SITES 

Stocking and introduction of fishes are widespread and have been undertaken for many 
decades. Despite this, the long-term ecological effects of these activities are not well 
understood, and the potential risks associated with stocking and introducing fishes into 
freshwater bodies are numerous (Table 2). Indeed, the Global Invasive Species Programme 
listed eight fish species, including two salmonids, among the ‘World’s Worst Invasive Alien 
Species’ (Cambray, 2003). Evidence suggests that, where natural recruitment is not limiting, 
stocking can have negative effects on the growth and survival of resident fish populations 
(Nielson et al., 1957; Harcup et al., 1984; Berg & Jorgensen, 1991; Naslund, 1992). This 
review focuses on salmonids, since this is the group of fishes most widely and heavily 
stocked in Scotland (and elsewhere), although other species are included where information 
exists as there is a growing demand for stocking of coarse fish in Scottish waters. It should 
be recognised, however, that without precise information of stocking activities, it is not 
possible to predict the likely impacts of particular management techniques on 
specific water bodies. Indeed, “The impact of alien invasive sport fish is for the most part 
unpredictable in time and space, with the introduction of relatively few species having 
resulted in many extirpations of indigenous fish species worldwide” (Cambray, 2003, p. 217). 
Moreover, the impacts of particular management techniques will be site-specific, due 
to the inherent differences in ecosystem dynamics between water bodies. Thus, 
selected case studies are presented to demonstrate the specific management techniques 
most likely to impact upon designated natural heritage sites. 

3.1 Changes to ecosystem functioning 

Ecosystems function through the complex interactions of primary and secondary producers 
with each other and their physical and chemical environment. Stocking and introduction of 
fishes have the potential to alter the functioning of ecosystems through a number of 
mechanisms.  

Contemporary theory suggests that stillwaters, especially shallow lakes, exist in one of two 
opposing stable states; either a clear-water state dominated by submerged aquatic 
macrophytes or a turbid-water state dominated by phytoplankton (Scheffer et al., 1993). 
Under certain circumstances, it is possible for a lake to switch from one state to the other. 
Whenever this happens, there is necessarily a mechanism that has upset the equilibrium of 
the ecosystem (see Moss et al., 1996). Potential mechanisms are numerous, but include 
fish. It has long been recognised, for example, that planktivorous fishes are a major factor 
influencing the species and size composition of zooplankton in freshwater ecosystems (e.g. 
Hrbáček et al., 1961). Phenomena frequently attributed to heavy fish predation include 
suppressed zooplankton biomass, small individual size of zooplankton, and reduced 
representation of vulnerable (typically larger) species (Cryer et al., 1986). Large-bodied 
zooplankters are more efficient grazers of phytoplankton than smaller-bodied species and, in 
the absence of severe predation, dominate the zooplankton (Brooks & Dodson, 1965). 
Stocking planktivorous fishes may, therefore, cause changes in ecosystem functioning by 
increasing predation on zooplankton. This can, in turn, reduce grazing of phytoplankton and 
cause a reduction in water clarity (Hembre & Megard, 2005). For example, Daphnia spp. 
densities in Loch Leven, Scotland, decreased after the introduction of rainbow trout, and 
there was size-selective predation on Daphnia spp. longer than 1.4 mm (Yang et al., 1999). 
Similarly, selection of large zooplankton species and individuals by cyprinids and percids, 
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Table 2. Hazards associated with stock enhancement activities (modified from Molony et al., 
2003). The risk and certainty of hazards occurring are scored as high (H), medium (M) or low 
(L) to indicate those of most concern. 

Hazard Risk Certainty Source(s) 

Increased intra-specific competition: due to 
increased abundance of the species by the 
addition of hatchery-reared fishes. 

M M Ackefors et al. (1991); Rowland (1994); 
Su & Liao (1999) 

Shifts in prey abundance: changes in the 
abundance of prey species due to increases in 
fish abundance as a result of stocking. 

L M Blaxter (2000) 

Prey-switching by wild predators: changes in 
the targeted prey of wild predatory species, 
usually to focus on hatchery reared (naïve) 
fishes due to large numbers released. 

L L Warburton et al. (1998); Wilhelm et al. 
(1999); Willette et al. (2001) 

Starvation/ food limitation: due to overstocking. L M Dushkina (1991); Ackefors et al. (1991) 

Exceeding the carrying capacity of an 
ecosystem: due to continued stocking after 
recovery. 

M M L’Abee-Lund (1991); Leber et al. 
(1998); FAO (1999); Blaxter (2000) 

Inter-specific competition: competition between 
hatchery reared fish and other species with 
similar ecological requirements. May lead to a 
reduction in abundances of competing species 
and prey species. 

H M Rowland (1994); Wiley (1995); FAO 
(1999) 

Displacement of wild stock: by hatchery-reared 
conspecifics, although there are no well 
documented examples. 

M L Blaxter (2000); L’Abee-Lund (1991); 
Leber et al. (1995, 1998); Bannister & 
Addison (1998); Butcher et al. (2000) 

Introduction of diseases and parasites: 
especially due to poor hatchery management 
and husbandry. 

H H Fjälling & Fürst (1987); Heggberget et 
al. (1993); Loneragan et al. (1998); 
Wootten (1998); FAO (1999); Burton & 
Tegner (2000); Lee et al. (2001) 

Genetic bottleneck: due to lack of genetic 
management of broodstock within the 
production system. 

H H Rowland (1994); Busack & Currens 
(1995); Compton (1995); Loneragan et 
al. (1998); Penman & McAndrew 
(1998); Utter (1998); Wootten (1998); 
Cross (1999); FAO (1999); 
Hershberger (2002); Lester (2002) 

Loss of genetic diversity and fitness: certain 
alleles of wild fish may become rare due to the 
release of hatchery-reared fish with a low 
genetic diversity. This is of higher risk where 
the wild stock is reduced to very low levels prior 
to stock enhancement. 

M/H H Leary et al. (1995); Penman & 
McAndrew (1998); Skibinski (1998); 
Utter (1998); FAO (1999); Burton & 
Tegner (2000); Lee et al. (2001); 
Lester (2002); Aprahamian et al. 
(2003) 

Extinctions: the loss of species due to 
increases in the abundance of released fish 
and ecosystem shifts. 

M L L’Abee-Lund (1991); Utter (1998); 
McDowell (2002) 

Ecosystem shifts: shifts in the distribution of 
biomasses or other species, possibly resulting 
in the loss of other ecosystem values. 

M M White et al. (1995); Crowe et al. 
(1997); Fielder et al. (1999); Arnason 
(2001); Lee et al. (2001) 

Physical environmental damage: due to 
stocking operations. 

H H Lee et al. (2001)  

Hindrance of difficult management decisions: 
(e.g. reduction of effort) due to the perception 
that stock enhancement will allow fishing 
activities to continue unabated. 

H H Burton & Tegner (2000) 

Diversion of management resources from other 
activities: for example, other management 
strategies.  

M H Burton & Tegner (2000) 
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such as roach (Rutilus rutilus (L.)), bream (Abramis brama (L.)), bleak (Alburnus alburnus 
(L.)) and perch (Perca fluviatilis L.), can cause shifts in the species composition of 
cladoceran communities, as well as reductions in the mean size of individuals of large 
species and in the assemblage as a whole (Perrow & Irvine, 1992; Mehner et al., 1995, 
1996, 1997; Jeppesen et al., 1996; Mehner, 1996, 2000; Korponai et al., 1997; Węgleńska 
et al., 1997; Kubečka et al., 1998; Moss et al., 1998; Chappaz et al., 1999; Romare & 
Bergman, 1999; Romare et al., 1999, 2003; Vašek et al., 2003; Mátyás et al., 2004; Vašek & 
Kubečka, 2004). In particular, larval and juvenile fishes have the potential to suppress 
populations of large cladocerans and copepods (Mehner & Thiel, 1999; Hansson et al., 
2007; Nunn et al., 2012). Cryer et al. (1986), for example, observed that in summers when 
0+ roach were abundant, zooplankton was sparse and dominated by copepods and rotifers, 
with cladocerans present in only low densities. Stocked and introduced fishes, including 
trout, may also have significant impacts on populations of aquatic insects (Pope et al., 2009), 
although some studies detected only minor impacts (e.g. Wissinger et al., 2006). 

Apart from the direct effects of fish predation on zooplankton demography, indirect impacts 
may also occur through shifts in their life history (e.g. changes in birth rates, fecundity, size 
and age at maturity, a switch from parthenogenetic to sexual reproduction, diapause), 
morphology (e.g. cyclomorphosis) or behaviour (e.g. diel vertical and horizontal migration) 
(Stibor & Luning, 1994; Pijanowska & Stolpe, 1996; Ślusarczyk, 1997; Hanazato et al., 2001; 
Hülsmann et al., 2004). All of these effects can have implications for ecosystem functioning. 
Such phenomena may mask the impacts of fish predation, however. Gliwicz (2001), for 
example, found that the species-specific density levels of particular zooplankton did not 
depend upon reproduction rate, since neither increased birth rates nor reproductive effort 
coincided with an increase in population density; a clear indication that larger numbers of 
prey were being consumed by fishes at the time of increased reproduction.  

Some fish are piscivorous, and may predate upon native fishes. This may be of particular 
importance where native stocks include rare species or strains (see Section 3.3). Grey et al. 
(2002), for example, found that brown trout in Loch Ness preyed upon Arctic charr 
(Salvelinus alpinus (L.)) and smaller trout. Similarly, in the Cowichan River in British 
Columbia, the primary food items of large, non-native brown trout were native salmon and 
trout, and their eggs (Krueger & May, 1991). By contrast, Barnard (2006) found that fish 
comprised only a relatively small proportion of food eaten by large, stocked diploid brown 
trout. In other situations, piscivorous fishes may consume zooplanktivorous fishes (such as 
Arctic charr in Loch Ness; Winfield et al., 2002a), thereby reducing predation pressure on 
zooplankton. This, in turn, may cascade through the trophic levels and cause an increase in 
grazing pressure on phytoplankton by zooplankton, and an improvement in water clarity. 
Indeed, both brown and rainbow trout, as well as pike (Esox lucius L.), zander (Sander 
lucioperca (L.)) and eel, have been successfully used in biomanipulation experiments to 
control zooplanktivorous fishes in eutrophic lakes (Geist et al., 1993; Frankiewicz et al., 
1996, 1999; Berg, 1998; Dörner et al., 1999; Dörner & Benndorf, 2003; Radke et al., 2003; 
Skov et al., 2003; Skov & Nilsson, 2007). 

It is also possible that stocked fishes may preferentially feed upon certain invertebrate taxa, 
which may have important ramifications regarding ecosystem functioning. This may be of 
particular significance should the preferred prey be of conservation interest (see Section 
3.4). Pelagic invertebrate predators of zooplankton, such as Chaoborus spp. larvae, 
Leptodora kindtii (Focke) and Bythotrephes spp., may limit populations of grazing 
zooplankton in a similar way to fishes (Hoffman et al., 2001; Riccardi et al., 2002; Liljendahl-
Nurminen et al., 2003; Wojtal et al., 2004). Indeed, Wissel et al. (2000) found that moderate 
densities of zooplanktivorous fishes were beneficial to the long-term success of 
biomanipulation because of their feeding upon zooplanktivorous invertebrates. Preferential 
feeding of fishes upon such taxa may, thus, have similar effects as piscivory upon 
zooplanktivorous fish. In some situations, therefore, it may be possible for the introduction of 
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fishes to cause a shift from a clear-water ecosystem dominated by macrophytes to a turbid-
water ecosystem dominated by phytoplankton, while in others the opposite may occur 
(Demers et al., 2001; Donald et al., 2001; McQueen et al., 2001; Lathrop et al., 2002; Skov 
et al., 2003). 

Another potential impact that should be considered is the higher nutrient levels (especially 
phosphorus) that may arise due to there being an increased standing crop of fishes (see 
Section 3.2). An increase in nutrient availability may cause a shift in trophic status of a water 
body, with inherent shifts in ecosystem functioning. Depending upon species, stocked fish 
may also have the capacity to alter ecosystem functioning via habitat modification. Carp 
(Cyprinus carpio L.), for example, are known to damage aquatic macrophytes through 
bioturbation (Cahn, 1929; Crivelli, 1983; Fletcher et al., 1985; Bruton & van As, 1986; Moyle 
et al., 1986; Welcomme, 1988; Khan et al., 2003; Pinto et al., 2005; Kloskowski, 2011), and 
detrimental effects have also been found for other benthivorous and herbivorous fish 
species, such as bream, tench (Tinca tinca (L.)) and grass carp (Cross, 1969; Stott, 1977; 
Williams et al., 2002; Dugdale et al., 2006). Similarly, the North American signal crayfish 
(Pacifastacus leniusculus (Dana)), which can be introduced with fish consignments (Section 
3.3.7), can have significant impacts on habitat structure and ecosystem functioning. The 
North American signal crayfish is an opportunistic, polytrophic feeder that can exert 
significant predation pressure on macrophytes (Guan & Wiles, 1998; Nyström, 1999, 2002; 
Lewis, 2002). Furthermore, North American signal crayfish have a habit of burrowing, which 
can weaken bank sides and increase their susceptibility to erosion, potentially leading to 
increased sedimentation of spawning gravels. Other non-native crayfish species, and the 
Chinese mitten crab (Eeriocheir sinensis H. Milne Edwards), may have similar impacts on 
habitat structure, including aquatic macrophytes. This is of particular relevance because 
aquatic macrophytes are integral to ecosystem functioning through their provision of habitat 
for phytophilic zooplankton (Northcott, 1979; Whiteside et al., 1985; Garner et al., 1996; 
Bass et al., 1997; Scheffer, 1999; Nurminen et al., 2001; Balayla & Moss, 2003, 2004) and 
refuge for planktonic species from fish predation (Schriver et al., 1995; Stansfield et al., 
1997; Bertolo et al., 1999; Perrow et al., 1999; Burks et al., 2001), and are important for 
oxygenation of water. In addition, aquatic macrophytes are important food sources for many 
species of waterfowl, including coot (Fulica atra L.), moorhen (Gallinula chloropus L.), 
Canada goose (Branta canadensis L.) and mute swan (Cygnus olor L.) (Schmieder et al., 
2006). Although trout can alter very localised physical habitat (e.g. through their spawning 
activities), under normal circumstances, introduction of trout per se is unlikely to change 
ecosystem functioning in this manner.  

A further issue is the potential for competition between stocked and native fishes, or for 
increased predator presence and predation following stocking (Section 3.3). Moreover, 
stocking of fishes may cause shifts in habitat use or feeding behaviour by native fish, which 
could have implications for ecosystem functioning. For example, in the absence of roach, 
young perch feed mainly upon planktonic cladocerans, whereas in the presence of roach 
they consume copepods and macroinvertebrates (Persson, 1987; Persson & Greenberg, 
1990). Similar interactions have been observed between juvenile Atlantic salmon and Alpine 
bullhead (Cottus poecilopus Heckel) (Amundsen & Gabler, 2008), roach and bream larvae 
(Nunn et al., 2011), brown trout and Arctic charr (Langeland et al., 1991), and brown trout 
and Atlantic salmon (Heggenes & Saltveit, 1990). The interactions, therefore, are complex, 
and the impacts of stocking are likely to be site-specific. 
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3.2 Impacts of nutrient import 

The trophic status of a water body generally describes its degree of fertility or productivity 
(Moss et al., 1996). Water bodies of low fertility or productivity are widely referred to as 
‘oligotrophic’, while successively more fertile and productive systems are termed 
‘mesotrophic’, ‘eutrophic’ and, ultimately, ‘hypertrophic’. This section discusses the possible 
impacts of nutrient import to designated natural heritage sites in Scotland, either as fish 
biomass or through supplementary feeding. 

The impacts of increased nutrient loading on fresh waters are numerous and well 
documented (see Moss, 1988, 1996; Moss et al., 1996). An increase in nutrient loading may 
cause a shift in trophic status of a water body, with inherent shifts in ecosystem functioning 
(Section 3.1). The increased standing crop of fishes following stocking may initially increase 
nutrient loading by conversion of animal and plant matter to nitrates and phosphates through 
the processes of digestion and excretion/defaecation, and later via their death, whereupon 
decomposition of their carcases releases nutrients into the water column or sediment. 
Increased availability of nutrients allows an increase in productivity of primary producers 
which, in turn, allows higher production of animals such as zooplankton and fishes. In 
addition, growth rates of native fishes may increase as a result of the overall increase in 
productivity of the water body and their feeding upon excess food (see below). The 
symptoms of nutrient loading are most frequently observed in aquatic plant communities 
(Carvalho & Moss, 1995), especially charophytes, which invariably require nutrient-poor 
conditions (see Section 3.4.2), but invertebrate and other animal groups are also affected. 
Regarding fishes, there is often a sequence of shifts in species composition from salmonids-
to-percids-to-cyprinids with increasing trophic status (Persson et al., 1991; Sandström & 
Karås, 2002; Tammi et al., 2003). This is of particular significance to native brown trout, 
Arctic charr and coregonid populations that inhabit oligotrophic or mesotrophic stillwaters 
(Section 3.3; Mills et al., 1990; Winfield, 1992), especially as nutrient recycling by fishes is 
thought to be greatest in low-productivity systems (Griffiths, 2006). For example, rainbow 
trout are more tolerant of eutrophic conditions than are brown trout (Taylor, 1978) and, thus, 
eutrophication could increase the success of the former over the latter species (Phillips et 
al., 1985). Similarly, eutrophication is likely to increase the success of percids and cyprinids. 

In addition, Carvalho & Moss (1995) found that mobilisation of nutrients and increased 
turbidity by carp, and to lesser extent bream and tench, was an important cause of 
eutrophication in a sample of stillwater SSSIs, and other workers obtained similar results 
(e.g. Williams et al., 2002; Zambrano et al., 2001; Miller & Crowl, 2006). Although trout can 
alter localised physical habitat (e.g. through their spawning activities), under normal 
circumstances, it appears unlikely that introduction of trout per se would significantly 
increase nutrient loading in this way. However, cyprinids or artificially high densities of trout, 
especially in shallow water bodies, may cause suspension of sediment, which could release 
nutrients into the water column. 

It is also possible that stocking may increase nutrient loading by virtue of the higher numbers 
of fishes feeding upon terrestrial organisms. Indeed, Mehner et al. (2005, 2007) suggested 

Summary of potential changes to ecosystem functioning 

• Switch of trophic states through grazing pressure on zooplankton.  

• Disruption of food chains/webs, e.g. by predation of native fishes or preferential feeding 
of stocked fish on certain taxa. 

• Higher nutrient levels (especially phosphorus) due to an increased standing crop of 
fishes. 
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that feeding of fishes on terrestrial insects may subsidise the nutrient pool of lakes, 
especially in small, oligotrophic water bodies in forested areas that have a high perimeter-to-
area ratios. Similarly, whereas the food of Arctic charr in Loch Ness is derived primarily from 
autochthonous sources (Grey et al., 2002), the food of brown trout is believed to be derived 
largely from allochthonous inputs (Jones et al., 1998). Furthermore, fish stocking may 
increase nutrient loading via elevated numbers of birds visiting the water body 
(guanotrophication). The issues relating to this are discussed in Section 3.3.2. 

Changes in trophic status may also occur in water bodies due to stocked fish (or fish 
growing-on in cages) being provided supplementary food. Numerous examples exist of the 
impacts of fish farms upon the sediment and biotic characteristics in the vicinity of fish 
cages, and trophic status in general (e.g. Penczak et al., 1982; Merican & Phillips, 1985; 
Phillips et al., 1985; Enell, 1995; Honkanen & Helminen, 2000; Yokoyama et al., 2006; 
Fernandez-Jover et al., 2007; Jusup et al., 2007; Azevedo et al., 2011). Impacts are 
invariably similar to those attributed to excessive ‘groundbaiting’ at cyprinid fisheries (e.g. 
Cryer & Edwards, 1987; Niesar et al., 2004; Arlinghaus & Niesar, 2005). A common 
symptom is an increase in trophic status, together with a deterioration in water quality (e.g. 
increased total-P, PO4-P, NH4-N, organic-N and total-C, and decreased dissolved oxygen 
concentrations) and associated changes in flora and fauna (Phillips et al., 1985; Jones, 
1990; Fozzard et al., 1999; Marsden & Mackay, 2001; Schindler et al., 2001; Zambrano et 
al., 2001). In Loch Fad, western Scotland, for example, inorganic nitrogen, ortho-phosphate 
and suspended solids were significantly higher near fish cages than elsewhere, and the 
phytoplankton was dominated by the toxic cyanobacterium Microcystis aeruginosa (Kützing) 
(Stirling & Dey, 1990). Similarly, point sources of sewage and effluents from fish-rearing 
ponds are major contributors to phosphorus loading in Loch Leven (Bailey-Watts & Kirika, 
1999; May et al., 2001, 2012; Carvalho et al., 2012; Spears et al., 2012), and approximately 
50% of the summer total phosphorus load in Lake of Menteith is derived from fish-cage 
discharge (Fozzard et al., 1999; SEPA, 2002). The effects of cage farming systems on 
freshwater ecosystems are compounded by the relatively high water-retention times in lake 
basins compared with the more regular flushing of estuarine or coastal systems (Grey et al., 
2004). Released and wild fishes often congregate around fish cages (e.g. Dempster et al., 
2002, 2004), and may feed upon excess food (Phillips et al., 1985). The risks of large 
aggregations of fishes near fish cages are beyond the scope of this report, but include 
increased transmission of parasites between wild and farmed fishes (Phillips et al., 1985). It 
is also possible that fish feeding on supplementary food may grow to a size large enough to 
become piscivorous, with the inherent implications discussed in Section 3.3.1. 

 

 

3.3 Risks to native salmon, trout, charr, whitefish and lamprey populations 

In the UK, numerous water bodies support unique strains of salmon, brown trout and charr 
(Mills et al., 1990; Maitland, 2004; Wheeler et al., 2004; Adams & Maitland, 2007; Maitland 
et al., 2007), and a small number contain whitefish. Three species of whitefish occur in the 

Summary of potential impacts of nutrient import 

• Higher nutrient levels (especially phosphorus) due to increased standing crop of fishes.  

• Increased nutrient loading by virtue of the higher numbers of fishes feeding upon 
terrestrial organisms. 

• Mobilisation of nutrients and increased turbidity by carp, and to lesser extent other 
cyprinids, can cause eutrophication.  

• Stocked fish (or fish growing-on in cages) may be provided with supplementary food, 
which increases nutrient inputs. 
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UK, namely vendace (C. albula (L.)), powan (syn. schelly/gwyniad, C. lavaretus (L.)) and 
pollan (C. autumnalis (Pallas)). Vendace is found only in Derwent Water in the English Lake 
District and a translocated population in Loch Skeen in Scotland, with the populations in 
Bassenthwaite Lake (English Lake District) and Castle and Mill Lochs (Scotland) now 
believed to be extinct (Maitland, 1990; C.W. Bean, pers. comm.). Powan is found in lochs 
Lomond and Eck (Scotland), Haweswater, Ullswater, Red Tarn and Brotherswater 
(England), and Llyn Tegid (Wales). Pollan is found in loughs Neagh, Erne, Derg and Ree in 
Ireland. All three species are listed in Appendix III (protected species) of the Bern 
Convention on the Conservation of European Wildlife and Natural Habitats (1979). A number 
of these populations are already under threat (Maitland & Lyle, 1990; Maitland, 1995), 
including from eutrophication and introductions of non-native fish species, such as ruffe 
(Gymnocephalus cernuus (L.)) (Winfield, 1992; Winfield et al., 1996, 1998, 2002b, c, 2007, 
2010, 2011; Winfield & Durie, 2004). Consequently, attempts have been made to establish 
refuge populations for vendace (Loch Skeen, Loch Valley and Daer Reservoir, Scotland; I. 
Sime, pers. comm.) and powan (Loch Sloy and Carron Valley Reservoir, Scotland; Etheridge 
et al., 2010). Four new sites have been identified as potential refuges for powan (Allt na 
Lairige, Lochan Shira, Loch Glashan and Loch Tarsan) and translocations from Loch 
Lomond and Loch Eck have already taken place.  

Sea lamprey (Petromyzon marinus L.), river lamprey (Lampetra fluviatilis (L.)) and brook 
lamprey (Lampetra planeri (Bloch)) are widely distributed throughout the British Isles, 
although in Scotland the sea and river lamprey are mainly, but not exclusively, distributed to 
the south of the Great Glen (Maitland & Campbell, 1992; Ecological Research Associates, 
2005). All three lamprey species are protected under the EC Habitats Directive, the Bern 
Convention and UK Biodiversity Action Plans (Harvey & Cowx, 2003; Maitland, 2003; Nunn 
et al., 2008a; Harvey et al., 2010). Of particular note in Scotland is the population of dwarf 
river lamprey found only in Loch Lomond and the Endrick Water (Maitland et al., 1994).  

This section reviews the likely impacts from stocking or introducing fishes into water bodies 
containing native salmon, brown trout, charr, whitefish or lamprey populations. When 
assessing the risks of stocking or introduction, it is important to consider the possibility of 
dispersal of fishes from their site of release into connected watercourses, and also the size 
of any residual stocks in water bodies that are stocked on a regular basis. 

3.3.1 Predation (direct impacts of stocking) 

Species interactions involving predation are probably the most evident and widely 
documented impact of stocked or introduced species, and can result in the complete 
elimination of indigenous species in parts of their range (see Holcík, 1991; Cowx, 1997; 
Cambray, 2003). Globally, introduced salmonids and piscivorous species, such as the 
largemouth bass (Micropterus salmoides (Lacépède)) and Nile perch (Lates niloticus (L.)), 
are particularly notorious. For example, bass (Micropterus spp.) and trout (Salmo spp., 
Oncorhynchus spp.) have been implicated in the decline or local extinction of eight cyprinid 
species, the Cape kurper (Sandelia capensis (Cuvier)) and the airbreathing shellear (Kneria 
auriculata (Pellegrin)) in South Africa (Skelton, 1993), with largemouth bass also one of the 
main causes of a decline in the endangered species Anaecypris hispanica (Steindachner) in 
Spain and Portugal (Collares-Pereira et al., 1998). Similarly, populations of many species of 
galaxiid have declined or become extinct following introductions of salmonids (McDowall, 
1990, 2003, 2006). 

Some large trout are piscivorous, and may predate upon native fishes (Welton et al., 1997; 
Hyvärinen & Huusko, 2006; Pink et al., 2007; Arismendi et al., 2009; Nasmith et al., 2010). 
This may be of particular importance where native stocks include rare species or strains; as 
mentioned previously, brown trout in Loch Ness prey upon Arctic charr and smaller trout 
(Grey et al., 2002), and wild brown trout in the River North Esk, Scotland, sometimes 
consume salmon smolts (Shearer, 1992). Introductions of trout have been implicated in the 
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decline or disappearance of many native fish species, through either predation or 
competition, with a paucity of indigenous fish species being reported in many areas where 
non-native trout occur (Nijjsen & de Groot, 1974; McDowall, 1990, 2003, 2006; Arthington & 
Blühdorn, 1996). There are also numerous reports of rainbow trout escaping from farms and 
decimating indigenous fish stocks, particularly through predation of juveniles. In parts of 
South Africa, rainbow trout prey on, and compete for food with, the rare indigenous Maluti 
minnow (Oreodaimon quathlambae (Barnard)) (Bruton & van As, 1986). In addition, rainbow 
trout have been shown to prey on the endangered barred galaxias (Galaxias fuscus Mack), 
yarra pygmy perch (Nannoperca obscura (Klunzinger)) and golden pygmy perch 
(Nannoperca variegata Kuiter & Allen) in Australia (Wager & Jackson, 1993). The 
distributions of rainbow trout and mountain galaxias (Galaxias olidus Günther) in the 
Australian Capital Territory appear to be mutually exclusive, presumably because of 
predation (Lintermans, 1991), and there have been similar impacts on the distribution of the 
common river galaxias (Galaxias vulgaris Stokell) in New Zealand (McDowall, 1990). 
Similarly, brown trout have been implicated in declines in populations of a number of fish 
species in Australia (Wager & Jackson, 1993). Lampreys are consumed by a range of 
predators, including brown and rainbow trout, with shoals of migrating or spawning lampreys 
being especially vulnerable to predation (Cochran et al., 1992; Cochran, 2009). Of the fish 
species that occur regularly in UK fresh waters, there is evidence that brown trout, rainbow 
trout, pike, eel, zander and European catfish (Silurus glanis L.) can exert significant 
predation pressure on fish populations (Linfield & Rickards, 1979; Fickling & Lee, 1983; 
Linfield, 1984; Hickley, 1986; Geist et al., 1993; Frankiewicz et al., 1996, 1999; Berg, 1998; 
Smith et al., 1998; Dörner et al., 1999; Dörner & Benndorf, 2003; Radke et al., 2003; Skov et 
al., 2003; Wysujack & Mehner, 2005; Skov & Nilsson, 2007; Copp et al., 2009b). 

In some situations, piscivory by stocked trout on native fishes may potentially be more 
significant because of the similarity in habitat occupied by wild trout, charr and whitefish, and 
the artificially high numbers of trout following stocking. The degree of piscivory may depend 
upon the species of trout stocked, with brown trout seemingly more prone to exhibit piscivory 
than rainbow trout (Phillips et al., 1985). In the Cowichan River in British Columbia, the 
primary food items of large, non-native brown trout were native salmon and trout, and their 
eggs (Krueger & May, 1991). In spite of this, colonisation of the Cowichan River by brown 
trout apparently had little or no impact on native salmonid abundance (Wightman et al., 
1998; Marsh, 2000). Barnard (2006) suggested that brown trout up to the 1+ age class were 
potentially at risk from predatory trout. However, fish comprised only a relatively small 
proportion of the food eaten by large, stocked diploid brown trout, although the data were not 
considered sufficient for firm conclusions to be drawn on the potential impacts of piscivory by 
stocked trout on wild fish communities (Barnard, 2006). 

There appears to be little evidence that stocked trout predate on fish eggs or induce 
significant egg mortality. Predation may occur on eggs that have not been buried and are, 
therefore, unlikely to survive, but there is little evidence of trout predating upon eggs that 
would otherwise have been viable. An exception to this is in the Cowichan River in British 
Columbia, where the eggs of native salmonids were found to be important in the diet of non-
native brown trout (Krueger & May, 1991). There may be a greater risk of predation on charr 
and whitefish eggs, however, because they are not buried to the same extent as salmon or 
trout eggs. Indeed, declines in a number of populations of whitefish species, including the 
powan in Loch Lomond, are thought to have been partly due to the spread of ruffe, which 
may feed on their eggs (Section 3.6; Adams & Tippett, 1991; Ogle, 1998; Winfield et al., 
1998; Etheridge et al., 2011). A number of other fish species, particularly pumpkinseed 
(Lepomis gibbosus (L.)) and mosquitofishes (Gambusia spp.), feed on the eggs and larvae 
of fishes and amphibians (Gamradt & Kats, 1996; Ivantsoff, 1999; García-Berthou & Moreno-
Amich, 2000; Zeiber et al., 2008; Reynolds, 2009), and signal crayfish, which can be 
introduced with fish consignments (Section 3.3.7), also pose a threat as they sometimes 
prey upon fishes or their eggs (Guan & Wiles, 1997; Nyström, 1999, 2002; Lewis, 2002; 
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Peay et al., 2009). No specific studies of the impacts of predation on lamprey eggs appear to 
have been conducted, although a number of fish species, including minnow (Phoxinus 
phoxinus (L.)), stone loach (Barbatula barbatula (L.)) and rainbow trout, have been observed 
to consume lamprey eggs (Close et al., 1995, cited in Cochran, 2009; Jang & Lucas, 2005). 
Indeed, large shoals of fishes, such as minnow, dace (Leuciscus leuciscus (L.)) and 
gudgeon (Gobio gobio (L.)), sometimes congregate immediately downstream of spawning 
lampreys (pers. obs.) and may consume drifting eggs. Although the impacts of predation on 
fish eggs by stocked or introduced fishes do not appear to have been quantified, concerns 
have been expressed by fishery managers as to possible damage arising from this 
behaviour. 

3.3.2 Predation (indirect impacts of stocking) 

Increased densities of fishes may encourage larger numbers of feeding cormorants 
(Phalacrocorax carbo carbo (L.), P. carbo sinesis (Blumenbach)) and, in some places, other 
piscivorous birds such as goosander (Mergus merganser L.), red-breasted merganser 
(Mergus serrator L.), grey heron (Ardea cinerea L.), osprey (Pandion haliaetus (L.)) and 
various divers (Gaviidae) and grebes (Podicipedidae), as well as otter (Lutra lutra (L.)) and 
American mink (Neovison vison (Schreber)). For example, it is thought that fish stocking led 
to an increase in cormorant numbers and predation at Loch Leven, Scotland (Stewart et al., 
2005). The impacts of predation by piscivorous birds on inland fish populations can be acute 
(see Feltham et al., 1999; Cowx, 2003; Russell et al., 2003, 2008; Orpwood et al., 2010), 
and may impact directly upon fish species of high conservation value (Winfield et al., 2003). 
Cormorants are capable of removing considerable numbers and biomass of fishes through 
predation, with inherent implications for fish standing crop and community structure. There 
may also be ramifications for fish growth rates and fecundity. Britton et al. (2002), for 
example, observed that heavy predation by cormorants at Holme Pierrepont Rowing Course 
(Nottingham) caused an increase in growth rates and fecundity, and lower ages at maturity 
of the remaining fishes. Alternatively, a greater availability of (potentially naïve) fishes may 
reduce predation pressure on species of conservation interest because of the relatively 
larger size and ease of capture of stocked fish compared with native fishes, However, there 
was no significant difference in the ratios of wild and stocked brown trout in Loch Leven and 
the diets of cormorants feeding at the site (Stewart et al., 2005). It should be noted that 
increased densities of fishes could benefit other animals of conservation interest, such as 
osprey and otter. Indeed, predation by otters is being increasingly reported at intensively 
stocked recreational fisheries, as well as on newly established salmon populations 
(Kloskowski, 2000, 2005; Britton et al., 2005; Kortan et al., 2007, 2010). 

Time of year is an important factor determining the impacts of predation by birds on fishes. 
At most sites, cormorant numbers are highest during the winter (Bearhop et al., 1999) and, 
therefore, predation on fish populations is usually highest at that time. Similarly, goosander, 
red-breasted merganser and most grebes and divers are usually present in the largest 
numbers at inland water bodies during winter. Exceptions are invariably where large 
breeding populations of birds occur in areas where they are not ordinarily found. Such cases 
are likely to be site-specific, as overwintering populations of cormorants and many of the 
other bird species greatly exceed those at other times of the year. Related to predation, an 
increased presence of piscivores may also be detrimental because of damage inflicted on 
fish during failed attacks (Russell et al., 2003, 2008; Orpwood et al., 2010; Kortan & 
Adámek, 2011). Fish that survive attacks by piscivorous birds and mammals frequently have 
characteristic wounds, which are potential sites of infection for pathogens such as fungi and 
bacteria. In addition, harassment of fish or even the mere presence of piscivorous birds and 
mammals may potentially impact upon fish health by increasing stress, which could 
suppress appetite, growth and immune responses. Moreover, avoidance of predation in 
refuge areas is likely to reduce the growth and reproduction potential of fish due to reduced 
feeding activity and energy intake (Kortan & Adámek, 2011). 
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Kirk et al. (2003) stated that cormorants may play an important role in transmission of 
parasites. Thus, there is a possibility that an increased presence of cormorants and other 
piscivorous birds may increase the incidence of parasitism in fishes (e.g. Bean & Winfield 
1989, 1992). This may be of particular importance should the water body contain fish 
species of conservation interest. Some parasites with simple, direct life cycles are capable of 
infecting a variety of host types and may, thus, pass directly from birds to fishes. By contrast, 
parasites with complex life cycles exploit a variety of intermediate and definitive hosts, 
including fishes and birds. Visiting birds may potentially introduce parasites or increase their 
abundance through expulsion of eggs or infective stages with their faeces. In addition, in 
situations where the number of definitive hosts (i.e. piscivorous birds) is limited, increased 
bird numbers may allow an increase in the numbers of parasites that attain maturity, thereby 
increasing parasite reproduction potential. 

Finally, it is also possible that piscivorous birds may impact upon the trophic status of water 
bodies. This may be of particular concern for water bodies that support fish species, such as 
charr (Mills et al., 1990) and whitefish (Winfield, 1992), that are dependent upon oligotrophic 
or mesotrophic conditions. Elevated numbers of piscivorous birds feeding at a given water 
body may facilitate nutrient cycling through their consumption of fishes and 
excretion/defaecation of waste products. The higher availability of nutrients allows an 
increase in primary and, accordingly, secondary productivity. In addition, increases in the 
numbers of ‘loafing’ or roosting birds may increase trophic status through a process known 
as guanotrophication (Leah et al., 1978; Moss & Leah, 1982; Ellis et al., 2006; Chaichana et 
al., 2010, 2011). Such situations are likely to be site-specific, and arise when loafing/roosting 
birds transfer nutrients from elsewhere into a water body with their excreta/faeces. It is also 
possible, however, that the opposite could occur, with large numbers of piscivorous birds 
feeding at given water body but roosting elsewhere, thereby removing nutrients from the 
catchment. 

 

 

3.3.3 Competition 

The ecological regulation of salmonid stocks is generally considered to be density-
dependent, linked to the productivity, suitability and carrying capacity of the environment 
(Armstrong et al., 2003; Klemetsen et al., 2003; Milner et al., 2003; Holmlund & Hammer, 
2004). The capacity to support a stock of spawning-sized fish is finite, with occupation of the 
available habitat determined by density-dependent competition. It is inevitable, therefore, 
with the exception of populations operating well below their carrying capacity, that unless 
increases in stocked trout populations are compensated by sufficient increases in food 
availability, overall production of native trout will decrease (Phillips et al., 1985). This may 
equally apply to interactions between stocked trout and native charr and whitefish, because 
of overlap in habitat occupied by trout, charr and whitefish in oligotrophic lakes. 
Notwithstanding, Duncan (1991, cited in Welton et al., 1997) detected no impacts on charr 
from the presence of introduced rainbow trout in Loch Awe, Scotland. 

Summary of potential risks to native fish populations - Predation 

• Stocking of trout has been implicated in the decline or disappearance of many native 
fish species - risk medium/high.   

• Piscivory by stocked fish, which depends upon the species of trout stocked: brown trout 
more prone to exhibit piscivory than rainbow trout - risk low. 

• Predation on eggs - risk low. 

• Increased densities of fishes may encourage larger numbers of feeding piscivorous 
birds - risk low/medium. 
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Competition with stocked fishes may affect wild fish stocks through either: (1) displacement 
from habitat through aggressive behaviour (Altukhov, 1981; Garcia-Marin et al., 1991, 1998); 
or (2) reduced energetic performance (e.g. growth, reproductive capacity) because of 
increased energetic cost of territory defence and competition for food. These issues are 
important because selection and culture conditions in hatcheries generally, although not 
universally (see Fleming et al., 2000), lead to hatchery-reared fish being more aggressive 
and faster growing than wild fish (Bachman, 1984; Ferguson, 2003, 2004; Ferguson et al., 
2007). However, the higher aggression of hatchery-reared salmonids  does not necessarily 
confer a competitive advantage to stocked fish, as hatchery-reared salmonids are reportedly: 
(1) inefficient feeders in natural conditions; (2) less energetically efficient than wild fish; and 
(3) unable to capitalise on success during aggressive interactions (e.g. occupation of optimal 
foraging sites) (Bachman, 1984; Deverill et al., 1999a, b). Indeed, Weber & Fausch (2003) 
concluded that, whilst most evidence implied competitive differences between hatchery-
reared and wild fish, the ecological consequences of these differences had not been 
quantified in most cases. Furthermore, competitive effects are not inevitable because of the 
interactions between genetic background, environment, life stage, size and other factors. 
Nevertheless, Fleming et al. (2000) found that resource competition and competitive 
displacement from introduced fish depressed productivity of native salmon populations by 
more than 30%, and concluded that continuous interventions could impact upon population 
productivity, disrupt local adaptations and reduce the genetic diversity of wild populations. 

Competition for food resources and habitat with stocked fish may result in reduced growth, 
survival and reproductive potential of native fishes (Waples & Drake, 2004; Britton et al., 
2007, 2011a). Competitive effects occur when behavioural interactions cause an unequal 
distribution of a resource that is directly or indirectly related to growth, survival or recruitment 
(Wootton, 1990; Ward et al., 2006). For example, fishes may alter their diets, and have lower 
growth rates, in the presence of competing species. Persson & Greenberg (1990) 
demonstrated that roach had a negative impact on the growth of juvenile perch, with 
individual growth rates of perch decreasing with increasing roach density, which was related 
to competition for food resources.  In the absence of roach, perch fed mainly upon planktonic 
cladocerans, whereas in the presence of roach they consumed copepods and 
macroinvertebrates. Similarly, Amundsen & Gabler (2008) found empirical evidence for food 
limitation and competition between juvenile Atlantic salmon and Alpine bullhead, resulting in 
reduced food acquisition and growth rates in Atlantic salmon. Similar interactions have been 
observed between brown trout and Atlantic salmon (Heggenes & Saltveit, 1990), brown trout 
and Arctic charr (Langeland et al., 1991), roach and dace (Cowx, 1989), and roach and 
bream (Nunn et al., 2011). If stocked fish successfully occupy habitat and use resources that 
would otherwise be used by native fishes then, over time, the characteristics and 
contribution of the wild spawning stocks may change. This could potentially be realised in 
terms of overall size of the spawning stocks, or the size or age at maturity of the wild fish. 
Indeed, Nilsson (1955, 1961, 1965, 1967, cited in Klemetsen et al., 2003) demonstrated 
interactive segregation between lacustrine charr and trout, with charr inhabiting the littoral 
zone in allopatry and shifting to the pelagial or profundal in sympatry. The repeated injection 
of farmed fish into fisheries negates the effects of mortality (natural and fishery), and could 
potentially minimise the chances of wild fish maturing and occupying these niches. 
Ultimately, this has the potential to impact negatively on spawning stocks of native trout, 
charr and whitefish. 

Competition for food, and space, both with conspecifics and other species may be 
particularly strong when unnaturally high densities of fishes are released in restricted areas, 
potentially leading to stunting of stocked/introduced and/or wild fishes. Stunting is a process 
whereby populations of species expand rapidly, producing large numbers of individuals that 
mature and breed at much-reduced sizes, and considerably diminishes the usefulness of the 
populations for angling or commercial purposes. Furthermore, stunted populations invariably 
subject food resources to a higher pressure than do size-structured populations, as small 
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fishes require more prey per unit body weight than do larger individuals (e.g. Smith et al., 
1996). Therefore they may exacerbate any impacts on food-web structure, nutrient dynamics 
and ecosystem functioning. A number of fish species have been reported as producing 
stunted populations and have been introduced into Scotland (e.g. crucian carp in lochs 
Lomond and Rannoch), whereas others occur there naturally (e.g. brown trout, Arctic charr, 
roach) (Adams, 1994; Fraser & Adams, 1997; Winfield et al., 2011). 

Exploitation competition is often invoked as the mechanism underlying the decline of 
indigenous fish species in areas where non-native and stocked species become established 
and abundant. Exploitation competition occurs as a result of a shortage of a critical resource 
required by competing organisms. The resource is usually food or space (i.e. the physical 
habitat required for spawning, foraging and other activities). Competition may alternatively 
involve a collection of effects termed ‘interference’, including territoriality, injury or death by 
encounter and inhibition of reproduction (Schoener, 1986). These two types of competition 
are often imperfectly distinguished in the description of interactions between 
stocked/introduced and wild fishes. Exploitation competition is notoriously difficult to 
demonstrate in the field, and most of the examples of impacts attributed to competition have 
no experimental basis. Notwithstanding, there is a strong belief that stocked or introduced 
fishes may out-compete indigenous species to the point of causing considerable reductions 
in abundance or even the disappearance of species. For example, brown trout are reported 
to have competed with and displaced indigenous salmonids in North America (Clugston, 
1990), and the decline and fragmentation of galaxiid and Macquarie perch (Macquaria 
australasica Cuvier & Valenciennes) populations in Australia has been attributed to 
competition with brown trout for food (Fletcher, 1979; Jackson & Williams, 1980; Wager & 
Jackson, 1993). Similarly, several native species have been out-competed by introduced 
tilapiine cichlids in the southern USA (Noble, 1980, cited in Welcomme, 1988), and in parts 
of South Africa, a rare species of kurper (Sandelia bainsi Castelnau) is reportedly threatened 
by competition with introduced rainbow trout, largemouth bass and translocated African 
sharptooth catfish (Clarias gariepinus (Burchell)) (Bruton & Van As, 1986; Cambray, 2003). 

 

 

3.3.4 Spawning and post-spawning recovery and survival 

The interactions of fertile stocked fish with spawning wild individuals is the fundamental 
source of genetic introgression between hatchery and wild strains of fishes (Fleming et al., 
2000; Verspoor et al., 2005). However, the levels of introgression are variable, and not 
always as high as expected from stocking rates in relation to wild fish densities (Section 
3.3.5). In some situations, stocked or escaped fish spawn earlier or later than wild fish, 
resulting in temporal segregation of spawning activity (Webb et al., 1991; Shields et al., 
2005). In addition, in some southern English chalk streams, spawning of stocked brown trout 
occurs in the main river stem, whereas wild fish spawn in tributaries and carrier streams 
(Shields et al., 2005). Similarly, differences in the spawning distribution of wild and escaped 

Summary of potential risks to native fish populations - Competition 

• Displacement of native fishes through aggressive behaviour – risk low/medium. 

• Competition reduces energetic performance of native fishes– risk low.  

• Competition for food resources and habitat with stocked fish may result in reduced 
growth, survival and reproductive potential of native fishes – risk medium.  

• Reduction in stocks of subordinate species or age groups – risk medium. 

• Overstocking can lead to reduction in fishery performance through competitive 
bottlenecks – risk variable.  
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Atlantic salmon were observed in the River Polla, Scotland, with wild fish tending to spawn 
further upstream than escapees (Webb et al., 1991). Such differences in behaviour may 
reduce the risk of genetic introgression between stocked and wild fish, although it is not 
known how widespread the phenomenon is. Where trout occur in stillwaters, spawning 
usually occurs in tributary streams, and stocked trout may compete with native trout for 
spawning habitat. Stocking with triploid trout may eliminate this problem, although the wider 
consequences of stocking triploids require further study (see Noble et al., 2004). In the UK, 
charr and whitefish generally spawn in lakes (but see Walker, 2007), and so are less likely 
than brown trout and Atlantic salmon to compete directly with stocked trout for spawning 
habitat. Moreover, whitefish spawn at a different time of year to trout (and coarse fish), while 
charr populations can have autumn- and spring-spawning components. 

Another factor that may affect the interactions between stocked and wild fishes is differential 
mortality because of the energetic costs of spawning. A potential hazard is that stocked fish 
may affect the post-spawning recovery and survival of wild fishes. The risk is probably 
dependent upon the relative condition of stocked and wild fishes at the end of the spawning 
period, and their relative competitive abilities. For example, it is believed that in some 
southern English chalk streams, stocked brown trout spawn earlier than wild fish (Shields et 
al., 2005) and, thus, presumably recover earlier than their wild conspecifics. Therefore, 
stocked fish may pose a hazard to the post-spawning recovery of wild fish, especially as 
they are generally more aggressive than wild fish (Bachman, 1984; Weber & Fausch, 2003; 
Ferguson, 2004). Stocking in the spring may minimise the impacts, as wild trout should have 
recovered from spawning and stocked fish will not have acclimatised to their new 
environment. There is also evidence from eastern Canada that a shift to earlier spawning 
times may increase the success of rainbow trout competing with brown trout (Dodge, 1983, 
cited in Phillips et al., 1985). Although self-sustaining populations of rainbow trout are 
relatively rare in the UK (Welton et al., 1997; Fausch, 2007), where they do occur with 
potential competition for spawning habitat, and earlier post-spawning recovery may be 
detrimental to native brown trout stocks. 

 

 

3.3.5 Genetic impacts 

The potential genetic impacts of stocking and introducing fishes are well known (Carvalho & 
Cross, 1998; Ferguson, 2003, 2007; Simon & Townsend, 2003; Hänfling et al., 2005; 
Madeira et al., 2005; Izquierdo et al., 2006; Hänfling, 2007; Griffiths et al., 2009; Mehner et 
al., 2009; Hansen et al., 2010; Wollebaek et al., 2010; Nock et al., 2011; Winkler et al., 
2011). Issues related to the release of strains or varieties can be similar to those associated 
with the release of non-native species (Coates, 1998). Stocked fishes often interbreed with 
their wild conspecifics, which may lead to disruption of genetic stocks (Ryman, 1981; 
Campton & Johnston, 1985; Taggart & Ferguson, 1986; Guyomard, 1989; Reisenbichler & 
Phelps, 1989; Utter et al., 1989; Harada et al., 1998; McGinnity et al., 2003). However, the 
contribution of stocked fishes to recruitment is variable. Hansen (2002), for example, 
calculated that the contribution of stocked brown trout to the gene pool of wild populations 
varied from 5% to as much as 88%. Differences in the timing of spawning (a high heritability 
trait) of stocked and wild brown trout are a major factor in reducing introgression (Ferguson, 

Summary of potential risks to native fish populations - Spawning and post-
spawning recovery and survival 

• Stocked trout may compete with native trout for spawning habitat – risk low. 

• Differential mortality may occur between stocked and wild fishes because of energetic 
costs of spawning – risk low/medium. 
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2007). In some southern English chalk streams, for example, it is believed that fertile 
stocked brown trout spawn earlier than wild fish, thereby reducing (but not excluding) 
introgression of genetic material from hatchery fish into the wild populations (Shields et al., 
2005). Genetic introgression is of particular concern where fish stocks are geographically 
isolated and may be genetically distinct (see Mills et al., 1990; Maitland, 2004; Adams & 
Maitland, 2007; Maitland et al., 2007). For example, ferox brown trout are genetically distinct 
from co-occurring brown trout in lochs Awe and Laggan in Scotland (Duguid et al., 2006). 
The use of all-female, triploid fishes has been suggested as a possible solution (see Noble 
et al., 2004 for a review) as they are considered infertile, although the processes used to 
induce triploidy may not be 100% effective (Pawson, 2003). The issues related specifically to 
the genetic impacts of stocking on indigenous brown trout populations and interbreeding 
between stocked brown trout and wild Atlantic salmon are reviewed in detail by Ferguson 
(2007) and Cowx et al. (2006), respectively. 

The reproductive capabilities of farmed fishes are often lower than those of wild conspecifics 
(Chilcote et al., 1986; Leider et al., 1990; Campton et al., 1991; Jonsson et al., 1991; 
Fleming & Gross, 1993). For example, controlled experiments with Atlantic salmon from the 
River Imsa, Norway, demonstrated that spawning success was higher for wild than for 
hatchery-reared fish, even when the potential for genetic differences between the two groups 
was very limited (i.e. parents were of wild local stock, with only half a generation in captivity) 
(Jonsson & Fleming, 1993), and other studies have reported similar results. In particular, 
males of hatchery origin often appear to have a lower reproductive success than females of 
hatchery origin. Jonsson et al. (1990, 1991) observed that the proportion of unspawned 
individuals, particularly males, was higher among ocean-ranched Atlantic salmon than 
among wild fish. Similarly, Fleming & Gross (1993) calculated that sea-ranched coho salmon 
(Oncorhynchus kisutch (Walbaum)) averaged 72% of the breeding success of wild fish. 
Leider et al. (1990) reported the lifetime reproductive success of sea-ranched steelhead 
(anadromous rainbow trout) to be only 11-13% that of wild fish. In addition, sea-ranched fish 
stayed in the spawning area for shorter time periods, strayed more during the spawning 
period, and were injured more often than wild fish. Although the reproductive capabilities of 
farmed fishes are often lower than those of wild conspecifics, it is not always the case. For 
example, the reproduction of escaped fishes did not appear to differ from that of wild 
individuals in either the River Oselven, Norway, or the River Polla, Scotland (Webb et al., 
1991; Fleming, 1995). 

Stocked or introduced fishes (including escapees from aquaculture facilities) may interact 
with wild populations by breeding with either conspecifics or closely related species (Munday 
et al., 1992; Beveridge & Phillips, 1993; Ferguson, 2007). Indeed, there is now a substantial 
body of evidence of interbreeding between escapees from fish farms and wild populations, 
including between native and non-native Oncorhynchus and Salmo species or sub-species 
(Allendorf & Leary, 1988; Verspoor, 1988; Garcia de Leániz et al., 1989; see Cowx et al., 
2006, 2010). In southern Norwegian rivers, for example, up to 28% of spawning Atlantic 
salmon may originate from fish farms (Munday et al., 1992). Similarly, numerous studies, 
including in Sweden, France, Spain, Ireland, Canada, Australia and the USA, have reported 
interbreeding of escapee brown trout and rainbow trout with indigenous populations, with 
introgression rates of up to 80% being recorded in France (Munday et al., 1992; Fletcher, 
1986). The effects of interbreeding vary from no measurable impacts on the genetic 
structure of local stocks (Borgstrøm et al., 2002) to partial or complete displacement of 
genetically distinct indigenous populations by homogeneous hatchery fish (Munday et al., 
1992). Thus, the threat of hybridization – whether intraspecific (between races, strains or 
sub-species of a species), interspecific (between species) or intergeneric (between genera) 
– with farmed fishes to the genetic integrity of wild populations must be considered a major 
concern for some species, especially salmonids and those of conservation importance. 
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Atlantic salmon in particular vary in their morphology from river to river, with wild populations 
often being adapted to the environments in specific rivers (Munday et al., 1992). Such 
adaptation is maintained by natal-stream homing of the adult fish. Many traits in Atlantic 
salmon have a heritable genetic basis, including growth rates, ages at maturity and smolting, 
egg sizes, the timing of sea migration and migratory behaviour at sea (Institute of 
Aquaculture, 1990). Similarly, farm-reared brown trout result in greater introgression in the 
freshwater component than in the anadromous component because farm-reared brown trout 
that became anadromous experience high mortality at sea. Given that anadromy is a 
threshold quantitative trait (i.e heritable), stocking farm-reared brown trout is likely to 
increase the freshwater component and reduce sea trout runs (Ferguson, 2007). Thus, there 
are concerns that the adaptive traits and reproductive fitness of genetically distinct wild 
stocks may be significantly affected by interbreeding with stocked or escapee fish 
(Beveridge & Phillips, 1993; Cowx et al., 2010). This issue was demonstrated by the 
conservation programme for Arctic charr in Lake Saimaa (Prammer et al., 1999). Prior to the 
early 1980s, only one self-sustaining population of Arctic charr was known to remain in the 
Lake Saimaa system, namely in Lake Kuolimo, and a restocking programme was initiated 
based on that stock. There were only a small number of individuals remaining and the 
hatchery-reared fish suffered from high egg and alevin mortality and disease susceptibility, 
which was suspected to be because of a lack of genetic variation in the broodstock 
(Prammer et al., 1999). 

Stocking environmentally or genetically altered fishes thus represents a serious threat to the 
genetic integrity of wild populations (reviewed by Hindar et al., 1991), notwithstanding that 
fish farmers now generally select broodstock to minimise genetic ‘pollution’ of wild stocks 
(Utter, 1998; Doyle et al., 2001). In terms of genetics, the most critical period of interaction 
between stocked and wild populations is probably during reproduction, as reproductive 
success determines the extent of gene flow. The reproductive success of stocked fishes will 
also influence the potential for competition between wild, stocked and hybrid offspring. In 
addition, the aggregation of stocked and wild fishes during the spawning period could 
increase the risks of transmitting parasites and diseases. All of these interactions can 
influence the genetic structure of wild populations, either directly through gene flow or 
indirectly through altered selection or reduced population sizes (reviewed by Waples, 1991). 
Reproductive interactions are thus key to understanding the genetic threats posed by 
artificially cultured fishes to wild populations. 

The three major threats to genetic diversity within species are extinction, hybridization and 
loss of local genetic adaptations. Extinction results in the complete loss of genes or gene 
combinations. The extinction of species or populations following stock enhancement 
programmes is primarily caused by competition with, or predation on, wild stocks. Such 
effects can occur through reductions in population size or alterations in the selective regime 
(e.g. through competition or predation) experienced by local populations (Billington & Hebert, 
1991). 

Hybridization represents a substantial threat to the genetic integrity of populations of several 
fish species. For example, Atlantic salmon and brown trout can produce viable hybrids and 
F2 and back-cross progeny (Alm, 1955; Piggins, 1965, 1966; Nygren et al., 1975), as can 
many other congeneric species (Chevassus, 1979; Verspoor & Hammar, 1991), although it 
should be noted that most F1 Atlantic salmon × brown trout hybrids are sterile. Intraspecific 
hybridization does not necessarily result in losses of individual genes but can rearrange 
gene combinations, which may lead to a loss of phenotypic adaptations to local 
environments (cf. Hindar et al., 1991). This is a particular threat to salmonid populations 
because of the large number of releases associated with intentional stocking, ranching and 
escapes from aquaculture facilities (Ryman & Utter, 1987; Allendorf & Leary, 1988; Hindar et 
al., 1991; Waples, 1991; Youngson et al., 1991; Carvalho & Cross, 1998; Fleming et al., 
2000; Ferguson, 2003; Youngson et al., 2003). As a consequence of accidental releases, 
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farmed Atlantic salmon have been recorded in substantial numbers in high-seas and coastal 
fisheries throughout the eastern Atlantic (Webb & Youngson, 1992; Hansen et al., 1993). In 
addition, escaped Atlantic salmon may enter rivers to spawn, sometimes in large numbers 
(e.g. in the River Polla, Scotland; Webb et al., 1991), and their progeny have been recorded 
in high frequencies (Webb et al., 1991, 1993; Lura & Økland, 1994; Clifford et al., 1997), with 
high frequencies of hybrids being detected in some rivers (Mathews et al., 2000). If genetic 
differences are too large, negative effects on fitness, known as outbreeding depression, may 
occur (Templeton et al., 1986; Lynch, 1991). Outbreeding depression resulting from loss of 
local adaptations can occur whenever there are genetic differences between populations 
(see below). 

Adverse genetic and ecological impacts on wild Atlantic salmon populations resulting from 
releases or escapes of artificially propagated stocks have been reported in a number of 
countries, including Norway, Scotland, Ireland and Canada (Hearn & Kynard, 1986; Beall et 
al., 1989; Heggberget et al., 1993; Jones & Stanfield, 1993; Gross, 1998). Impacts on wild 
fish have included reductions in genetic diversity and capacity to evolve, introductions of 
genetic maladaptations as a result of interbreeding with artificially propagated individuals, 
and competition for food and space with hatchery stocks (Einum & Fleming, 1997; Gross, 
1998). Ultimately, stocked or escaped Atlantic salmon are considered to have the potential 
to impact on the productivity, local adaptations and genetic diversity of wild populations 
(McGinnity et al., 1997, 2003; Fleming et al., 2000). By contrast, the magnitude of genetic 
introgression that results from stocking farm-reared brown trout is highly variable, 
unpredictable and apparently unrelated to the scale of the stocking (Ferguson, 2007). Where 
the relative numbers of stocked and native brown trout were estimated, the genetic impacts 
were much less than expected from equivalent survival levels. For example, Hansen (2002) 
recorded only 6% introgression in a population where the expected genetic contribution by 
farm-reared brown trout, based on the number of stocked fish and assuming equal survival 
and reproduction of native and stocked fish, was 64%. However, introgression has generally 
been greater in resident brown trout than in sea trout when rivers are stocked with farm-
reared brown trout (Hansen et al., 2000; Ruzzante et al., 2004), and similar results have 
been obtained for other salmonid populations (LeClair et al., 1999; Utter, 2001; Englbrecht et 
al., 2002; Small et al., 2004; Piller et al., 2005). 

Interspecific hybridization is also of great concern (Youngson et al., 1993; Fleming et al., 
2000; Hansen, 2002; Verspoor et al., 2005). For example, evidence from rivers in western 
and northern Scotland suggests that farmed female Atlantic salmon spawn with brown trout 
more frequently than do their wild conspecifics, with the progeny of farmed female salmon 
containing up to 10% F1 hybrids (Youngson et al., 1993). The incidence of F1 hybrids in 
Norwegian rivers situated close to salmon farms increased three-fold following expansion of 
the aquaculture industry (Hindar & Balstad, 1994). This may be indicative of a breakdown in 
reproductive isolation between Atlantic salmon and brown trout, which could ultimately lead 
to gene introgression (Verspoor, 1988; Garcia de Leániz & Verspoor, 1989). Similarly, in 
Ireland, the third largest producer of farmed salmon (10 000 t in 2008) in Europe, the 
incidence of hybridization has increased in rivers in close proximity to farms (Matthews et al., 
2000). It should be noted, however, that most F1 Atlantic salmon × brown trout hybrids are 
sterile. 

Welcomme (1988) suggested that the stresses associated with stock enhancement may 
lead to a breakdown in normal behaviour and the formation of hybrids between species and 
even genera that do not normally hybridise in the wild. The potential for this could be further 
increased by degradation or loss of spawning areas. Habitat loss could reduce the areas 
suitable for spawning and induce a breakdown of normal reproductive isolating mechanisms. 
Irrespective, the problem is serious because of a potential loss of genetic fitness in wild 
populations (Hindar et al., 1991; McDowell, 2002; McGinnity et al., 2003). Repeated 
interactions between stocked and wild fishes result in lowered fitness, causing cumulative 
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fitness depression and potentially an extinction vortex in vulnerable populations (McGinnity 
et al., 2003). 

The preservation of genetic variations within wild populations is particularly important for the 
maintenance of ecological fitness and function, and the ability to adapt to environmental 
changes (Jørstad et al., 1999), as the fitness and adaptability of organisms are largely 
determined by genetic factors (O’Connell & Wright, 1997; Taniguchi, 2003). However, stock 
enhancement has the potential to replace local, adapted stocks with more homogeneous 
stocks from hatcheries, thereby limiting the sustainability of the species in the wild (Waples & 
Drake, 2004). Even though fishes have been artificially reared and released into the wild for 
over a century, relatively few experiments addressing the genetic effects of such releases 
have been carried out. The genetic effects following releases of farmed fishes may be 
positive, neutral or negative. If wild populations are highly inbred, positive genetic effects 
could occur because of limited gene flow from stocked fish. Neutral genetic effects would be 
expected where stocked fish are not genetically different from wild fish. No direct genetic 
effects would occur where hatchery-reared fish do not reproduce. By contrast, negative 
genetic effects would be expected after introgression of farmed fish into locally adapted, wild 
populations. Current knowledge suggests that negative genetic effects would be the most 
likely to occur in salmonids, as wild populations are typically genetically distinct (Allendorf & 
Utter, 1979; Ryman & Utter, 1987) and adapted to their local environment (Ricker, 1972; 
Taylor, 1991). Indeed, Reisenbichler (1988) presented strong evidence for local adaptation 
in coho salmon, demonstrating a negative association between both the recapture rates of 
transplanted fish relative to local stocks, and the geographical distance the transplanted fish 
had been transferred from their natal stream. Similar results have been obtained for Atlantic 
salmon (e.g. Ritter, 1975; Hansen et al., 1989). For many traits, hybrids between native and 
non-native stocks are intermediate between the parental groups (Bams, 1976; Brannon, 
1982; Hemmingsen et al., 1986), indirectly indicating local adaptations. 

Studies of juvenile salmonids in fresh water have shown that survival is often higher for wild 
fish than for released farmed fish (Schuck, 1948; Leider et al., 1990). A direct genetic basis 
for reduced juvenile survival was indicated in a study of rainbow trout, where survival was 
higher for native fish than for non-native farmed fish and native × farmed hybrids 
(Reisenbichler & McIntyre, 1977). Other studies have shown that genetic changes occur in 
hatchery-propagated salmonids that would be expected to reduce their performance in the 
wild. For example, changes that affect swimming stamina (Green, 1964) and territorial 
(Norman, 1987) and concealment behaviour (Vincent, 1960). There have been fewer studies 
of post-smolts and sub-adults at sea, but the return rates of hatchery-produced fish are 
typically lower than those of wild fish, and the return rates of transplanted and crossbred 
stocks are generally lower than those of native populations (Ricker, 1972; Brannon, 1982; 
Bailey, 1987; Garcia de Leániz et al., 1989). This could be related to either a lower ocean 
survival or increased straying rate of non-native fish, or both, and could have both genetic 
and phenotypic causes. Furthermore, disease resistance often differs between wild and 
stocked fish, invariably being greater in wild individuals, unless the disease itself was 
introduced (Hemmingsen et al., 1986; Johnsen & Jensen, 1991). 

As mentioned previously, the ever-expanding aquaculture industry is likely to lead to 
increases in the numbers of fishes released (Nash & Kensler, 1990; Riggs, 1990; Hindar et 
al., 1991; Milner & Evans, 2004; Cowx et al., 2008; Bostock et al., 2010).  Thus, the threat of 
hybridization (and introgression) with farmed fishes to the genetic integrity of wild 
populations is a major concern. It follows, therefore, that programmes involving the release 
of fishes should aim to minimise any genetic changes and conserve genetic resources 
(Carvalho, 1993; Ryman et al., 1995). Considering the limited knowledge of the selective 
significance of specific genes or gene combinations in natural populations, stocking 
practices must be essentially non-specific, although with an emphasis on maximising allelic 
diversity and the associated variance in ecologically-significant traits. Busack & Currens 
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(1995) and Lynch (1996) emphasised that although genotypic traits that do not closely relate 
to obvious fitness characters (i.e. molecular variation) can be measured with relative ease, it 
is much more difficult to assess genetic differences within or among populations in terms of 
quantitative traits. It is the latter, however, that determines fitness variation in physiological, 
morphological or behavioural characters, but understanding their control typically requires 
elaborate breeding experiments in controlled environments. Indeed, it is the poor 
understanding of the link between molecular variation and fitness parameters that is the 
obstacle in assessing genetic risks in stocking and introduction practices. 

There is a theoretical, positive relationship between genetic variability and the ability to adapt 
to natural and anthropogenic changes in the environment. Similarly, a crucial factor 
determining the ecological persistence of stocked or introduced fishes is the association 
between genetic variability and population sizes, especially in founder stocks (introductions) 
or broodstocks. It is a lack of distinction between the direct effects of fish releases on 
population sizes and associated effects on genetic structure that has led to inadvertent, and 
sometimes irreversible, losses of genetic (and biological) diversity. There is thus a need to 
develop strategies that will minimise the genetic effects of fish stocking and introductions on 
wild populations; this is a fundamental issue that has been ignored in the past, but which 
must now be considered integral to the formulation of all stocking programmes. Actions to 
minimise potential genetic impacts are discussed in Section 4.3.4. 

 

 

3.3.6 Parasites and diseases 

A major risk of introducing or stocking fishes is the accidental introduction of non-native 
parasites and diseases, or an increased prevalence or intensity of native parasites and 
diseases caused by stocking fish with elevated pathogen loadings (Boxshall & Frear, 1990; 
Bauer, 1991; Kennedy, 1993; Cowx, 1994 a, b and  c, 1998b; Gozlan et al., 2005; Thrush & 
Peeler, 2006; El-Rashidy & Boxshall, 2009; Peeler & Thrush, 2009; Hershberger et al., 2010; 
Taylor et al., 2010a; Peeler & Feist, 2011). As such, considerable efforts are currently 
focusing on reducing the possibility of species introductions, and mitigating any negative 
impacts when invasions occur (Peeler & Thrush, 2004; Peeler et al., 2004, 2007, 2009; 
Copp et al., 2005, 2009a; Stentiford et al., 2010; Taylor et al., 2010b, 2011; Tricarico et al., 
2010). Although some parasites are host-specific, many are capable of infecting a wide 
range of host species. An example includes Myxobolus (syn. Myxosoma) cerebralis Hofer, 
the cause of whirling disease in rainbow trout, which is normally a harmless parasite of 
brown trout. Thus, it is possible that stocking or introducing fishes could infect native salmon, 
trout, charr, whitefish or lampreys with previously absent parasites and diseases. For 
example, important protozoan pathogens in wild fishes in Loch Fad, western Scotland, were 
probably introduced with stocked fish from a cage culture facility (McGuigan & Sommerville, 
1985). The risks are dependent upon the relative disease status of the stocks and the 
condition of the fish farm supplying the stocking material. It is essential, therefore, that strict 
health-check regulations, such as those adopted by the Marine Scotland Fish Health 

Summary of potential risks to fish populations – Genetic issues 

• Stocks exhibit genetic variation that is manifest as differences in growth potential, age 
at maturity, fecundity, and can have implications for coevolution and adaptation 
processes – risk medium /high depending on species. 

• Stocks exhibit adaptation towards particular environments and stocking could lead to 
loss of fitness – risk medium /high. 

• Stocking may result in genetic drift and dilution of gene pool – risk medium /high; loss 
of genetic diversity – risk medium /high; and hybridisation – risk medium/high. 
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Inspectorate (MSFHI) or the EA under Section 30 of the Salmon and Freshwater Fish Act 
1975, are enforced to minimise any undue health risks to native salmon, trout, charr, 
whitefish and lampreys. The role of the MSFHI in checking and monitoring fish health and 
the registration of hatchery facilities is described on the Scottish government webpage 
(http://www.scotland.gov.uk/Topics/marine/Fish-Shellfish/FHI). 

The introduction and translocation of parasites and diseases can occur via fishes not 
intended for release or through indiscriminate or planned stocking. For example, the 
nematode Anguillicoloides (syn. Anguillicola) crassus Kuwahara, Niimi & Itagaki was 
introduced into Europe with oriental eels (Anguilla spp.) intended for human consumption, 
and has spread rapidly across Northern Europe (Kennedy & Fitch, 1990; Evans & Matthews, 
1999; Costa-Dias et al., 2010; Kangur et al., 2010; Lefebvre et al., 2011). Similarly, the 
cestodes Khawia sinensis Hsü and Bothriocephalus acheilognathi Yamaguti were introduced 
to the UK with consignments of carp, despite strict health regulations on fish movements 
(Andrews et al., 1981; Chubb & Yeomans, 1995; Yeomans et al., 1997). Infectious dropsy of 
cyprinids was also spread throughout continental Europe with carp (from the former 
Yugoslavia). Yersinia ruckeri Ewing, Ross, Brenner & Fanning, the causative agent of 
enteric redmouth disease in parts of northern Europe, was introduced with uncontrolled 
shipments of fathead minnow (Pimephelas promelas (Rafinesque)) from North America 
(Michel et al., 1986). Furthermore, the pathogens of several fish diseases, including 
infectious pancreatic necrosis (IPN), infectious haematopoietic necrosis (IHN) and bacterial 
kidney disease (BKD), can be transmitted via gametes, so unfertilised eggs, sperm and 
embryos, as well as adult fishes, are all potential vectors. In excess of 100 parasites and 
diseases are now known to have been introduced to Europe with consignments of fishes 
(see Cowx et al., 2007). 

A major impact of the North American signal crayfish, which can be introduced with fish 
consignments (Section 3.3.7), in Europe has been as a vector of the crayfish plague fungus 
(Aphanomyces astaci Schikora), which has caused large-scale mortalities amongst 
indigenous crayfish populations, particularly in England (Holdich & Reeve, 1991; Alderman 
1997; Holdich et al., 2009). European crayfish species have no resistance against crayfish 
plague and, therefore, experience total mortality. By contrast, North American crayfish 
species have co-evolved with the disease and developed defence systems, making them a 
natural host and vector of the fungus (Evans & Edgerton, 2002). A large proportion of North 
American signal crayfish are carriers of the crayfish plague fungus. Thus, where North 
American signal crayfish populations become established, crayfish plague is also likely to 
become established. Consequently, the spread of North American signal crayfish is a 
serious threat to indigenous crayfishes in Europe. Indeed, the Global Invasive Species 
Programme listed the crayfish plague fungus among the ‘World’s Worst Invasive Alien 
Species’. Once present, fungal spores infest susceptible individuals and can ultimately infect 
entire populations. Other vectors of crayfish plague include birds or mammals moving 
between infected and uninfected water bodies, spores being transported by boats (e.g. on 
hulls or in bilges) or fishing gear (e.g. nets and waders), and transfers of contaminated 
water. In addition, North American signal crayfish may be introduced with consignments of 
fish (Section 3.3.7). Indeed, there are several locations where this could have occurred in 
Scotland, including the River Nairn, the River Shee and a number of stillwater fisheries (i.e. 
in the East Lothian Tyne catchment), and at least one of the farms that have been used to 
widely stock fishes in Scotland is now infested with North American signal crayfish (although 
it is unknown whether it was infested when stocking was occurring; C.W. Bean, pers. 
comm.). It should be noted that no crayfish species naturally occur in Scotland, although 
there are two populations of white-clawed crayfish (Austropotamobius pallipes (Lereboullet)) 
that were introduced more than 50 years ago (Bean et al., 2004). 

Many diseases that infect hatchery-reared salmonids, and which now occur in the wild, were 
originally imported (Peeler et al., 2011). For example, rainbow trout from western North 
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America are thought to have been the vector for the introduction of furunculosis to Europe 
and South America (Snieszko, 1973). Similarly, furunculosis was probably introduced into 
the UK with brown trout from Denmark, spread throughout the country following movements 
of farmed trout (Pillay, 1992), and subsequently imported to Norway with Atlantic salmon 
smolts from Scotland (Egidius, 1987). In addition, Atlantic salmon populations in Norway 
have suffered massive mortalities and, in some areas, total eradication caused by the 
monogenean trematode Gyrodactylus salaris Malmberg, which was introduced with infected 
Atlantic salmon from Sweden (Johnsen & Jensen, 1991; Mo, 1992; Munday et al., 1992; 
Pillay, 1992; Bakke et al., 2002). Although there is no evidence for the presence of G. salaris 
in the UK, efforts should be made to reduce the possibility of it being imported with 
consignments of fishes (Shinn et al., 2001; Peeler et al., 2004). 

These examples illustrate the risks of introducing and dispersing parasites and diseases as 
a result of stocking and introducing fishes. It should also be recognised that the high 
stocking densities in many aquaculture facilities may increase fish stress, potentially 
suppressing immunity and leading to outbreaks of disease, which may then become a 
source of transmission to wild stocks in the vicinity (Liao et al., 2003; Bartley et al., 2006). 
The high concentrations of wild animals in the vicinity of many aquaculture facilities may 
further increase the possibility of transmitting diseases, or facilitate the life cycles of 
parasites by providing intermediate hosts. The spread of parasites and diseases is of 
relevance to environmental protection and may exact high ecological and economic costs 
(Munday et al., 1992; Pillay, 1992), although no information exists concerning the latter. The 
challenge that faces regulators is that of minimising the introduction and spread of parasites 
and diseases, but this is fraught with difficulties. As described previously, K. sinensis has 
spread throughout the UK since it was introduced, with its known range coinciding almost 
exactly with that of its host, the common carp (Chubb & Yeomans, 1995). The rapid spread 
of K. sinensis with movements of carp from the Far East, through Russia to Western Europe 
demonstrates the limitations of regulatory mechanisms across Europe, including the UK, in 
preventing its dispersal, and the challenges facing regulators is minimising the introduction 
and spread of parasites and diseases.  

 

 

3.3.7 Spread of non-native organisms with stocked fishes 

Whilst the movement of parasites, pathogens and diseases can occur via fishes released or 
through indiscriminate or planned stocking, there is also the risk of other biota ‘piggy-
backing’ in the consignment for stocking. For example, movements of contaminated batches 
of fishes for fisheries purposes allowed topmouth gudgeon (Pseudorasbora parva 
(Temminck & Schlegel)) to become the most invasive fish species in Europe, and which now 
has a pan-European distribution (Gozlan et al., 2010). Similarly, North American signal 
crayfish may also be moved to water bodies with consignments of fish. There are several 
locations where this could have occurred in Scotland, including the River Nairn, the River 
Shee and still water fisheries (i.e. in the East Lothian Tyne catchment) (C.W. Bean, pers. 
comm.).   

This transfer of passengers with the target species for stocking can occur when the stocked 
fish are introduced into their intended water body. However, unintended introductions can 

Summary of potential risks to fish populations - Parasites and diseases  

• High stocking densities in many aquaculture facilities may increase fish stress, 
potentially suppressing immunity and leading to outbreaks of disease, which may then 
become a source of transmission to wild stocks – risk variable 



29 
 

occur when water is exchanged during transportation of the stock, and eggs and juveniles of 
the unintended biota escape with the water change.  

 
 

3.3.8 Fishing pressure and mortality 

Fishery enhancement through stocking has the purpose of either sustaining fisheries at their 
current levels of exploitation or expanding the fisheries to support greater levels of fishing 
pressure. A potential hazard with this is that increased fishing pressure may result in higher 
mortality of wild fish, either through higher direct fishing mortality or through increased 
mortality caused by catch-and-release stress (Cooke & Schramm, 2007; Arlinghaus et al., 
2009). If fishing mortality exceeds the natural productivity of the system, impacts on the 
viability of wild populations through a reduction in the size of the spawning stocks may occur. 
Furthermore, there is a risk that increased fishing pressure on stocked fish may lead to an 
increase in the bycatch of charr and/or whitefish (such as observed with the introduced 
whitefish population in Carron Valley Reservoir; C.W. Bean, pers. comm), with concomitant 
increases in fishing mortality. Policies to balance appropriate stocking strategies to the 
conditions in receiving water bodies provide scope to mitigate these types of hazards, 
although to what extent this occurs is uncertain. Where vulnerable or rare species are 
restricted to a small number of designated sites, as are the whitefish, the 
precautionary principle should apply, such that stocking or introduction of fishes, 
including trout, should be prohibited or restricted to safeguard populations.  It is 
recognised, however, that this could be difficult where vulnerable or rare species were 
introduced to an existing fishery that was maintained by stocking (e.g. whitefish in Carron 
Valley Reservoir). In addition, care should be taken to ensure that increases in the presence 
of anglers do not disturb populations of breeding birds and other fauna. 

There are several indirect pressures exerted by enhancing fisheries.  These include:  

 increased presence of avian predators such as cormorants associated with the timing 
of stocking to take advantage of the elevated food resources; 

 increased angling pressure around the time of stocking, which may coincide with 
sensitive breeding times of birds and other wildlife, or more generally disturb wildlife 
through, for example, trampling of vegetation. 

 

 

Summary of potential risks from spread of non-native organisms with stocked 
fishes 

• Care must be taken to ensure that other non-native, non target organisms are not 
introduced as part of the stock enhancement programme - this includes due diligence 
when exchanging water during transportation and when the fish are stocked into the 
receiving water body  – risk medium. 

Summary of potential risks to fish populations - fishing pressure and mortality 

• Increased fishing pressure may result in higher mortality of wild fish, either through 
higher direct fishing mortality or through increased mortality caused by catch-and-
release stress - risk low/medium. 

• Stocking may encourage increased fishing pressure that can indirectly lead to 
disturbance of wildlife - risk low/medium. 
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3.4 Threats to protected invertebrates and macrophytes in designated sites 

It is well documented that fishes may preferentially prey upon certain invertebrate taxa over 
others (e.g. Maitland, 1965; Mann & Orr, 1969; Pedley & Jones, 1978; Nunn et al., 2007b, 
2012). In addition, the North American signal crayfish can exert significant predation 
pressure on aquatic invertebrates and macrophytes (Guan & Wiles, 1997; Nyström, 1999, 
2002; Lewis, 2002; Peay et al., 2009). This may be problematic should the prey be 
designated species or assemblages. Alternatively, the presence of fishes could cause a shift 
in the diets of other species to feed upon designated animals or plants. The various direct 
and indirect impacts of fish predation upon ecosystem functioning as a whole have been 
discussed in Section 3.1. This section discusses whether stocking or introducing fishes 
poses a threat to designated invertebrate assemblages or species, or macrophyte 
communities, and identifies which species might be at risk, and under which circumstances. 

3.4.1 Invertebrates 

Invertebrate species that are protected under Schedule 5 of the Wildlife and Countryside Act 
(1981 and as amended) and that occur in Scottish fresh waters are the white-clawed 
crayfish, freshwater pearl mussel (Margaritifera margaritifera (L.)) and medicinal leech 
(Hirudo medicinalis L.). The freshwater pearl mussel and white-clawed crayfish are also 
listed on Annex 2 of the Habitats Directive.  There are 19 Special Areas of Conservation for 
pearl mussel in Scotland.  Unless stated otherwise, the information used in this section was 
obtained from the JNCC and UK BAP websites (http://www.jncc.gov.uk/ and 
http://www.ukbap.org.uk/). 

The favoured habitats of the medicinal leech are unlikely to be targeted for fish introductions, 
although the possibility of migration of stocked fishes from their site of release elsewhere 
should be acknowledged. By contrast, the white-clawed crayfish and freshwater pearl 
mussel favour clean, well-oxygenated streams, rivers and lakes, and often coexist with 
native brown trout and salmon (Hastie et al., 2003; Holdich, 2003; Skinner et al., 2003). 
Indeed, the freshwater pearl mussel requires salmonid hosts for its glochidia larvae (Hastie 
& Cosgrove, 2001; Hastie & Young, 2003; Geist et al., 2006; Taeubert et al., 2010). Although 
the white-clawed crayfish is widespread in England and Wales, many populations have been 
lost since the 1970s as a result of crayfish plague, competition from exotic crayfish species, 
habitat modification and pollution (Holdich & Reeve, 1991; Holdich & Rogers, 1997; Bubb et 
al., 2005, 2008; Holdich et al., 2009). Similarly, the freshwater pearl mussel has suffered 
from poor water quality, habitat degradation, flow regulation, fisheries management and 
over-exploitation (Cosgrove et al., 2000; Hastie et al., 2000; Bolland et al., 2010). 
Considering the current distributions of each of the above invertebrate species, the 
freshwater pearl mussel is the most likely to be at risk from fish stocking and introductions in 
Scotland. The white-clawed crayfish does not naturally occur in Scotland, although two 
introduced populations exist (Holdich, 2003; Bean et al., 2004). Large fishes could potentially 
predate upon mussels, while a range of indirect effects may also occur (Sections 3.1 & 3.2). 
Stocking of fishes, particularly non-native species, should therefore be restricted or 
prohibited where key populations of freshwater pearl mussel exist. Consideration 
should also be given to the possibility of migration of stocked fishes from their site of release 
into tributaries that may be important for the freshwater pearl mussel. 

Lists of conservation priority species can be found on the UK Biodiversity Action Plan 
website (http://www.ukbap.org.uk/). Excluding those included in the Wildlife and Countryside 
Act, priority invertebrates that occur in Scottish fresh waters are one species of diving beetle 
(Hydroporus rufifrons (Müller)), one species of reed beetle (Donacia aquatica (L.)), one 
species of stonefly (Brachyptera putata (Newman)) and one species of cranefly 
(Rhabdomastix laeta (Loew)). However, these species occupy microhabitats not generally 
exploited by fish. For example, H. rufifrons occurs in extremely shallow, temporary pools in 
unimproved pasture, while the larvae of D. aquatica inhabit aquatic weedbeds. Brachyptera 
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putata and R. laeta are mostly confined to running water, and so could be affected by fish 
stocking and introductions.  

3.4.2 Macrophytes 

Macrophyte species that are protected under Schedule 8 of the Wildlife and Countryside Act 
(1981 as amended) and macrophyte species that occur in Scottish fresh waters are 
pigmyweed (Crassula aquatica (L.)), floating water plantain (Luronium natans (L.)), slender 
naiad (Najas flexilis (Willd.)) and bearded stonewort (Chara canescens Desv. & Lois.). 
Floating water plantain and slender naiad are also listed on Annex 2 of the Habitats 
Directive.   

Pigmyweed is known only from the River Shiel, where it occurs in shallow waters or in 
wetlands and vernal pools, including bare mud when water levels recede. Floating water 
plantain occurs in a range of freshwater situations, but thrives best in areas where growth of 
emergent vegetation is restricted (Willby & Eaton, 1993; Lansdown & Wade, 2003; Bazydło, 
2004). Its distribution is localised in the UK, with recent records from Wales, the West 
Midlands and northern England, but it also occurs as an introduction to ditches in the Norfolk 
Broads and a few localities in Scotland. Slender naiad occurs in deep, often coloured or 
turbid water in mesotrophic lakes (Wingfield et al., 2005). It is seldom found in water less 
than 1 m in depth. In the UK, this species is found exclusively in Scotland, with many sites 
on islands off the west coast, as well as important populations elsewhere in Argyll, 
Perthshire and Highland. Bearded stonewort is a species of clear, brackish water up to 2.5 m 
deep in lagoons, lakes and pools by the coast. It usually prefers sites in the 4-20 ‰ salinity 
range, although its English sites are unusual in being inland and very low salinity (<1 ‰). In 
the UK, bearded stonewort is restricted to three sites near Peterborough, Cambridgeshire, 
and one site in the Outer Hebrides (Loch Mor, Baleshare). 

In addition to those listed in the Wildlife and Countryside Act, priority macrophyte and 
charophyte species that occur in Scottish fresh waters are Baltic stonewort (Chara baltica 
Bruz.), lesser bearded stonewort (Chara curta Braun), mossy stonewort (Chara muscosa 
Groves & Bullock-Webster), slender stonewort (Nitella gracilis (Smith)), tassel stonewort 
(Tolypella intricata (Trent.)), bird’s nest stonewort (Tolypella nidifica (Müller)), great tassel 
stonewort (Tolypella prolifera (Ziz)), marsh clubmoss (Lycopodiella inundata (L.)), pillwort 
(Pilularia globulifera L.), grass-wrack pondweed (Potamogeton compressus L.) and Shetland 
pondweed (Potamogeton rutilus Wolfg.) 

Trout rarely consume aquatic plant material, so herbivory is an unlikely impact of trout 
stocking, although other fish species (e.g. carp, grass carp, tench, rudd (Scardinius 
erythrophthalmus (L.))) do consume vegetation (Cross, 1969; Stott, 1977; Williams et al., 
2002; Tomec et al., 2003). Indeed, grass carp have been used to control excessive growths 
of aquatic vegetation (Cross, 1969; Stott, 1977). As mentioned previously (Section 3.1), trout 
are not known to alter physical habitat and so, under normal circumstances, it appears 
unlikely that introduction of trout per se would significantly damage aquatic vegetation 
although, again, other species (especially carp) can cause substantial damage. Threats 
common to the majority of the above aquatic plant species include habitat loss, land 
drainage, changes in management regimes, pollution and afforestation. However, the most 
prevalent threat appears to be nutrient enrichment. Thus, the most likely impacts of stocking 
fishes, especially trout, on aquatic plants are indirect, such as increases in nutrient loading 
and/or shifts in ecosystem functioning. Elevated fish biomass, together with mobilisation of 
nutrients and increased turbidity, could potentially contribute towards eutrophication, the 
symptoms of which are most frequently observed in aquatic plant communities (Carvalho & 
Moss, 1995). The potential consequences of shifts in ecosystem functioning or increases in 
nutrient loading are discussed in Sections 3.1 & 3.2, respectively, and so are not addressed 
further here. 
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The species known to occur in Scotland that are most likely to suffer from the stocking or 
introduction of fishes are those that inhabit areas potentially suitable for fish stocking and 
introduction, namely floating water plantain, slender naiad, bearded stonewort, Baltic 
stonewort, lesser bearded stonewort, mossy stonewort, slender stonewort, bird’s nest 
stonewort, grass-wrack pondweed and Shetland pondweed. The habitats favoured by tassel 
stonewort and great tassel stonewort are unlikely to be targeted for fish stocking or 
introduction (e.g. shallow, overgrown habitats such as drainage ditches, marshes and 
ephemeral pools). In addition, a number of the species (e.g. pigmyweed, marsh clubmoss, 
pillwort) inhabit the drawdown zones of ponds and lakes, and so are likely to coexist with 
fishes only periodically. Detailed information on each of the plant species can be obtained 
from the JNCC and UK BAP websites (http://www.jncc.gov.uk/ and 
http://www.ukbap.org.uk/). 

Another issue that should be considered is the indirect impact of fish stocking and 
introduction upon vegetation via increased angling pressure. Similar to trampling and grazing 
by livestock, angling has the potential to impact upon aquatic vegetation as a result of 
trampling by anglers and clearance of fishable areas (Linton & Goulder, 2000; Goulder, 
2001). Ironically, in the absence of appropriate management, the effects of angling may be 
beneficial as there is often an increase in aquatic vascular plant (macrophyte) species 
richness in ponds that are used for angling, at least partly caused by disturbance. Where 
protected plant species are restricted to a small number of sites, introducing and, to a 
lesser extent, stocking fishes, especially herbivorous species but including 
salmonids, should be prohibited or restricted to safeguard populations.  

 

 

3.5 Case studies 

A number of designated natural heritage sites are managed as trout fisheries, including Loch 
Leven (National Nature Reserve [NNR], Ramsar site, SPA and SSSI), Lake of Menteith 
(SAC and SSSI), Butterstone Loch (SPA and SSSI) and Lindores Loch (SSSI) in Scotland, 
and Esthwaite Water (Ramsar site and SSSI) and Chew Valley Lake (SPA and SSSI) in 
England. Loch Leven and Chew Valley Lake were selected as case study sites because of 
their long-term management as trout fisheries and status as SPAs. Esthwaite Water was 
selected as it hosts an established salmonid farm, and has been extensively studied by the 
Freshwater Biological Association (FBA). Less published information appears to exist for 
Lake of Menteith, but it was nonetheless chosen as a case study site because of its status 
as a SAC and its management as a trout fishery. In addition, Loch Lomond (NNR, Ramsar 
site and SPA) was selected because of its importance as a natural heritage site. As 
mentioned above, however, without precise information on stocking activities and other 
management techniques, it is not possible to predict the likely impacts on ecosystem 
functioning and trophic status of specific water bodies. Moreover, the impacts of 
particular management techniques will be site-specific, because of the inherent 
differences in ecosystem dynamics between water bodies. Similarly, it is not possible to 
determine nutrient budgets without site-specific data (see Johnes et al., 1996; Moss et al., 
1996). Thus, before nutrient fluxes can be modelled, appropriate data should be sought from 

Summary of potential risks to designated invertebrates and macrophytes 

• Most invertebrate species indentified do not occupy habitats stocked with trout. 

• Habitats favoured by protected macrophytes unlikely to be targeted for fish stocking, 
although this possibility may be higher for stocking of coarse fish – risk low.  

• Trout rarely consume macrophytes but coarse fish consume soft-fleshed macrophytes 
and carp displace rooted vegetation – risk low. 
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the relevant authorities (e.g. Scottish Environment Protection Agency (SEPA). For 
designated natural heritage sites, the precautionary principle should apply, such that 
introduction and, to a lesser extent, stocking of fishes, including trout, should be 
prohibited or restricted to safeguard the conservation interests of such water bodies. 
Unless stated otherwise, the information on Loch Lomond, Butterstone Loch, Lindores Loch, 
Esthwaite Water and Chew Valley Lake was obtained from the JNCC website 
(http://www.jncc.gov.uk/). 

3.5.1 Loch Lomond 

Loch Lomond is a large (7027 ha), deep (max. depth 191 m) lake located near Glasgow, 
west-central Scotland. The loch is the largest area of fresh water in Britain, the second 
largest in volume (2652 × 106 m2), and the third longest (36.3 km) and deepest. It comprises 
an oligotrophic north basin (2280 ha surface area, 140 m mean depth), a mesotrophic 
middle basin (1410 ha surface area, 60 m mean depth) and a eutrophic south basin (3350 
ha surface area, 27 m mean depth) (Winfield et al., 2011). 

Loch Lomond is designated as a NNR, Ramsar site and SPA, and the surrounding woodland 
is designated as an SAC and SSSI. The Ramsar site and SPA consist of a marshy area 
around the lower reaches of the River Endrick and four wooded islands in the loch, with the 
loch shore comprising low-lying, regularly flooded wetlands, woodland fringes and rough 
pasture. The floodplain mire consists mainly of eutrophic-mesotrophic swamp communities, 
dominated by reed-canary grass (Phalaris arundinacea L.), with sharp-flowered rush (Juncus 
acutiflorus Ehrh. ex Hoffm.), bladder-sedge (Carex vesicaria L.), water sedge (Carex 
aquatilis Wahlenb.) and common sedge (Carex nigra (L.)) also present. The shore zone of 
the islands is species rich and supports a variety of plants, including globeflower (Trollius 
europaeus L.), columbine (Aquilegia vulgaris L.) and goldilocks (Ranunculus auricomus L.). 
The site is also rich in invertebrates and supports a Red Data Book moth, the bulrush 
wainscot (Nonagria typhae (Thunberg)), and Holopedium gibberum Zaddach is present in 
the zooplankton (Pomeroy, 1994). In addition, the Endrick confluence supports 
internationally important numbers of Greenland white-fronted goose (Anser albifrons 
flavirostris (Scopoli)) and the islands are used by breeding capercaillie (Tetrao urogallus L.). 
Indeed, the site qualifies under Article 4.1 of the Directive (79/409/EEC) by supporting up to 
1.5% of the breeding population of capercaillie and up to 1.1% of the wintering population of 
Greenland white-fronted goose in Britain. 

The fish community of Loch Lomond is also of conservation importance. Indeed, a survey of 
235 NNRs throughout Britain identified Loch Lomond as being of outstanding importance for 
fishes (Lyle & Maitland, 1992). The loch is one of only two sites in Scotland that supports 
natural populations of powan, and is the only site in Scotland to support a race of river 
lamprey that completes its entire life cycle to fresh water (Brown & Scott, 1994; Maitland et 
al., 1994); note a non-migratory population of river lamprey also exists in Lough Neagh 
(Goodwin et al., 2006). Populations of brook and sea lamprey are also of particular note, and 
the loch has important salmon, sea trout and pike fisheries (Adams, 1994; Maitland et al., 
1994). Although Loch Lomond has not been the target of stocking, in the last two decades a 
number of fish species have been introduced illegally (e.g. ruffe, bream, dace, gudgeon, 
crucian carp, chub [Leuciscus cephalus (L.)]), some of which have established self-
sustaining populations (Adams & Maitland, 1991; Adams, 1994; Winfield et al., 2007, 2011). 
Of all of the introductions, that of the ruffe has been the most dramatic and concerning 
(Winfield et al., 2011). Declines in the endemic population of powan are thought to be partly 
due to the spread of ruffe, which may feed on their eggs (Ogle, 1998; Winfield et al., 1998; 
Etheridge et al., 2011). Indeed, Adams & Tippett (1991) calculated that ruffe accounted for 
64% of powan egg predation. 
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3.5.2 Loch Leven 

Loch Leven lies midway between the Forth and Tay estuaries in east-central Scotland. It is 
the largest naturally eutrophic loch in Britain and Ireland, with a surface area of 1330 ha and 
mean and maximum depths of 3.9 m and 25.5 m, respectively (Wright, 2003). The loch has 
suffered from eutrophication for more than a century, with blooms of cyanobacteria occurring 
every year, although there have been signs of improvement (e.g. reduced algal biomass, 
increased macrophyte biomass, increased invertebrate diversity) in the last three decades 
(Fozzard et al., 1999; Carvalho et al., 2012; Dudley et al., 2012; Gunn et al., 2012; May et 
al., 2012; Spears et al., 2012). 

Loch Leven supports internationally important wintering populations of waterfowl (Carrs et 
al., 2012). The site qualifies under Article 4.1 of the Directive (79/409/EEC) by supporting 
populations of European importance of whooper swan (Cygnus cygnus L.) (up to 1.8% of the 
wintering population in Great Britain). The site also qualifies under Article 4.2 of the Directive 
(79/409/EEC) by supporting populations of European importance of pink-footed goose 
(Anser brachyrhynchus Baillon) (up to 8.1% of the wintering Eastern Greenland/Iceland/UK 
population) and shoveler (Anas clypeata L.) (up to 1.3% of the wintering 
Northwestern/Central Europe population). In addition, the area qualifies under Article 4.2 of 
the Directive (79/409/EEC) by regularly supporting at least 20 000 waterfowl, including 
goldeneye (Bucephala clangula (L.)), tufted duck (Aythya fuligula (L.)), pochard (Aythya 
ferina (L.)), teal (Anas crecca L.), gadwall (Anas strepera L.), cormorant, shoveler, pink-
footed goose and whooper swan. During the breeding season, the area regularly supports 
black-headed gull (Larus ridibundus L.) (4% of the Great Britain population on average). As 
well as birds, Loch Leven supports the nationally rare invertebrates Macroplea 
appendiculata (Panzer), Thanatophilus dispar (Herbst) and Saldula fucicola (Sahlberg), and 
the nationally important plant species Juncus filiformis L. and Hierochloe odorata (L.). 

Loch Leven supports a natural brown trout fishery (Thorpe, 1974a, b; Fozzard et al., 1999), 
as well as populations of perch, pike, minnow (Phoxinus phoxinus (L.)), three-spined 
stickleback (Gasterosteus aculeatus L.), stone loach (Barbatula barbatula (L.)), brook 
lamprey and eel (Stewart et al., 2005; Winfield et al., 2012). In addition, supplementary 
stocking of brown trout commenced in 1983 and of rainbow trout in 1993 (Wright, 2003). 
From 1998 to 2001, between 100 000 and 200 000 brown trout were stocked into the loch as 
fingerlings in spring, with approximately 30 000 rainbow trout stocked annually from March to 
August (Stewart et al., 2005). However, stocking no longer occurs in Loch Leven (Winfield et 
al., 2012). 

The loch has a relatively high phosphorus load (~8 t yr-1), with run-off from the land and 
waste from over-wintering waterfowl being the most important contributors (Bailey-Watts & 
Kirika, 1999; May et al., 2001, 2012). This, combined with its shallow depth and high water-
retention time, makes the loch prone to algal blooms (May et al., 2001; Carvalho et al., 
2004). Other consequences of eutrophication include a long-term decline in submerged 
macrophytes and invertebrate species diversity (Morgan, 1970; Jupp & Spence, 1977). 
Although stocking no longer takes place, it is likely that the long-term problem of 
eutrophication and stocking large numbers of fishes in the past impacted upon the 
ecosystem functioning and trophic status of the water body, as described in Section 3.3. In 
addition, the large numbers of waterfowl that congregate on the loch, especially during 
winter, may increase nutrient loading through guanotrophication. 

3.5.3 Lake of Menteith 

Lake of Menteith is a large (263 ha), mesotrophic kettle hole, located close to Loch Lomond 
and the Trossachs, west-central Scotland. The lake is designated for its aquatic 
macrophytes, which include a population of slender naiad (Fozzard et al., 1999). A number 
of fish species inhabit the lake, including roach, pike and brown trout, and a rainbow trout 
fishery has operated on the lake since 1967 (SEPA, 2002). 
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One of the main threats to slender naiad, as with many other plant species and ecosystem 
functioning in general, is eutrophication. In Lake of Menteith, approximately 50% of the 
summer total phosphorus load is derived from consented fish-cage discharge, and the lake 
suffers from severe blue-green algal blooms in the autumn (Fozzard et al., 1999; SEPA, 
2002). Whereas many macrophyte and algae species are capable of utilising bicarbonate 
(often the predominant form of carbon in eutrophic waters) when carbon dioxide is scare, 
slender naiad is not. In such situations, the photosynthetic capacity of slender naiad is 
reduced, and the plant is outcompeted by other species (Wingfield et al., 2005). 
Furthermore, increasing production by the fish farm is continuing to increase nutrient loading 
in the lake (SEPA, 2002). Despite this, published information regarding the current ecology 
or management of Lake of Menteith is apparently sparse, although data presumably exist in 
the grey literature. It is likely, however, that the activities of the fish farm and stocking large 
numbers of fishes (~1000 per week) impact upon the ecosystem functioning and trophic 
status of the water body, as described in Sections 3.1 & 3.2. In addition, the site experienced 
a major fish kill in 2009 (C.W. Bean, pers. comm.; 
http://www.timesonline.co.uk/tol/news/uk/scotland/article6182383.ece). 

3.5.4 Butterstone Loch 

Butterstone Loch is a small (43.5 ha), shallow (max. depth 9 m) meso-oligotrophic lake 
located north of Perth, east-central Scotland. The loch has a diverse aquatic flora and an 
extensive area of fen, and formerly supported Nitella spp., Chara spp., Isoetes spp. and 
slender naiad, a benthic-dominated diatom community and diverse zooplankton (Bennion et 
al., 2010). In addition, it is one of a small number of sites in the UK to have been recolonised 
by ospreys, and there is a range of other breeding, and wintering, birds. 

Butterstone Loch is designated as an SPA and SSSI. The loch has undergone major 
ecological changes in the last century, including increases in plankton production and the 
relative importance of diatoms associated with eutrophic conditions, and reductions in the 
diversity and changes in the composition of the zooplankton and aquatic plant communities, 
with nutrient enrichment most likely a major factor (Bennion et al., 2010). Nutrient 
enrichment dates back to c. 1900, with a further increase c. 1970; the most likely cause was 
intensification of agriculture in the catchment, with effluent and waste food from a fish farm 
being another source (Bennion et al., 2010). Indeed, between 1981 and 2004 there were six 
cages in the loch, stocked with 5.1 t of rainbow trout, with the input of phosphate from fish 
feed being ~70 kg yr-1 (Bennion et al., 2010). The cages were then removed in 2004 and the 
current consent allows 150-600 trout (brown and rainbow) to be stocked per week. The 
contribution of fish to the degradation of the loch has not been quantified, but the impacts of 
the fish cages, exacerbated by stocking, may have been substantial (Bennion et al., 2010). 

3.5.5 Lindores Loch 

Lindores Loch is a small (40.5 ha), shallow (max. depth 3.5 m) mesotrophic lake located 
near Perth, east-central Scotland. The loch has extensive charophyte beds and a number of 
Potamogeton spp., and formerly supported Nitella spp., Chara spp., Ranunculus spp., 
Nymphaeaceae, alternate water-milfoil (Myriophyllum alterniflorum DC.) and slender naiad, a 
non-planktonic diatom community and a diverse zooplankton community dominated by plant-
associated taxa (Bennion et al., 2010). In addition, the freshwater transition mire is one of 
the most extensive and least disturbed in the area and, together with adjoining rich-fen and 
alder-willow carr, supports a diverse flora that includes a number of local rarities (Bennion et 
al., 2010). There is also a diverse breeding bird community that includes several regionally 
uncommon waterfowl species and one national rarity. 

Lindores Loch is designated as a SSSI for its transition mire and breeding bird assemblages. 
The loch has undergone major ecological changes in the last century, including increases in 
plankton production and the relative importance of diatoms associated with eutrophic 
conditions, and reductions in the diversity and changes in the composition of the 
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zooplankton and aquatic plant communities, with nutrient enrichment most likely a major 
factor (Bennion et al., 2010). The first major change occurred pre-1900, with another c. 
1945, but the most significant change occurred c. 1970 when 48 000 rainbow trout, 4000 
brown trout and 1500 brook trout (Salvelinus fontinalis (Mitchill)) were introduced (Bennion et 
al., 2010). It is believed that the fishery had consent to stock 500 brown trout per year and 
200 rainbow trout per week (Bennion et al., 2010), although the loch has not been stocked 
for several years (R. Gardiner, pers. comm.). The fishery also had consent to control coarse 
fish (eel, perch, pike and carp) populations, with 600-1000 pike being removed annually 
(Bennion et al., 2010), although this no longer occurrs (R. Gardiner, pers. comm.). Although 
the contribution of past fish stocking to the current status of the loch has not been quantified, 
there is evidence from the zooplankton record that increased fish predation may have played 
a role (Bennion et al., 2010). 

3.5.6 Esthwaite Water 

Esthwaite Water is located between Windermere and Coniston Water in the Lake District, 
north-west England. The lake is 2.5 km long, approximately 0.5 km wide, with a mean depth 
of 6.4 m, and is one of the best examples of a mesotrophic lake in England and Wales. The 
complex of open water, fen and grassland communities supports a characteristic flora that 
includes examples of nationally rare and local species. Of particular note are the slender 
naiad and elongated sedge (Carex elongata L.), with Esthwaite Water the only known 
location of slender naiad in England and Wales, although it is now feared to be extinct at this 
site (Wade, 1994, cited in Wingfield et al., 2005). Over 120 invertebrate species have been 
recorded, including the uncommon water boatman Sigara semistriata (Fieber), the local 
caddis fly species Cyrnus flavidus (McLachlan), Oecetis furva (Rambur) and Polycentropus 
kingi (McLachlan), the rare cladoceran Alonella exigua (Lilljeborg) and, notably, the triclad 
Bdellocephala punctata (Pallas). In addition, the lake is of local importance for breeding 
birds, including great crested grebe (Podiceps cristatus (L.)), teal, tufted duck, red-breasted 
merganser, pochard and sedge warbler (Acrocephalus schoenobaenus (L.)). 

Esthwaite Water’s current condition is considered unfavourable due to eutrophication, which 
has resulted in a significant deterioration of the aquatic macrophyte flora. In spite of this, 
recent published information regarding the current ecology or management of the lake is 
apparently sparse, although data presumably exist in the grey literature. The single most 
important source of nutrients, especially phosphorus, to the lake is a fish farm. The farm 
produces approximately 100 tonnes (wet weight) of rainbow trout per annum (Hall et al., 
1993, cited in Grey et al., 2004), with an estimated 150-300 kg of waste food and 250-300 kg 
(dry weight) of faeces introduced into the aquatic environment for every tonne of fish 
produced (Phillips et al., 1985, cited in Grey et al., 2004). Grey et al. (2004) investigated the 
fate of waste food from the fish farm at Esthwaite Water using stable isotope analyses, and 
demonstrated incorporation of pellet-derived material into the diets of planktonic and benthic 
communities. Moreover, after allowing for a number of trophic transfers, it was demonstrated 
that the predatory cladoceran L. kindtii also utilised pellet material, while roach were 
probably short-circuiting the food chain by directly consuming particulate pellet material, as 
well as through ingestion of zooplankton. Indeed, a simple two-source mixing model 
revealed that approximately 65% of Daphnia spp. and >80% of roach body carbon may be 
derived from pellet material in the plankton, and that chironomid larvae may incorporate 
>50% in the sediment environs. 

3.5.7 Chew Valley Lake 

Chew Valley Lake is located to the south of Bristol, south-west England. The lake is a 
shallow, productive, hard-water reservoir, with mean and maximum depths of 4.3 m and 11.5 
m, respectively (Ibbotson & Klee, 2002). The reservoir was created in the early 1950s by 
damming the River Chew, and developed as a trout fishery (Wilson, 1971). It has a surface 
area of approximately 500 ha when full, but water levels can fluctuate widely, and a relatively 



37 
 

small draw-down can result in large areas of the littoral zone becoming exposed (Ibbotson & 
Klee, 2002). The sparse submerged vegetation is composed largely of fennel pondweed 
(Potamogeton pectinatus L.), lesser pondweed (Potamogeton pusillus L.), opposite-leaved 
pondweed (Groenlandia densa (L.)) and water crowfoots (Ranunculus spp.). 

Chew Valley Lake is designated as an SPA on the basis of its waterfowl populations, 
qualifying under Article 4.2 of the Directive (79/409/EEC) by supporting populations of 
European importance of shoveler (up to 1.3% of the wintering Northwestern/Central Europe 
population). The reservoir also supports nationally important numbers of teal, gadwall and 
tufted duck. Species over-wintering include goldeneye, wigeon (Anas penelope L.), snipe 
(Gallinago gallinago (L.)), lapwing (Vanellus vanellus (L.)), redshank (Tringa totanus (L.)) 
and Slavonian grebe (Podiceps auritus (L.)). Up to 50 broods of great crested grebe and 28 
of little grebe (Tachybaptus ruficollis (Pallas)) are raised annually, with autumn numbers of 
the former species being the highest in Britain. Duck species breeding regularly include 
gadwall, mallard (Anas platyrhynchos L.), shoveler, pochard, tufted duck, ruddy duck 
(Oxyura jamaicensis (Gmelin)) and shelduck (Tadorna tadorna (L.)). The lake also supports 
up to 42 000 roosting black-headed gull, common gull (Larus canus L.) and lesser black-
backed gull (Larus fuscus L.). 

Chew Valley Lake has been managed as a trout fishery since its creation in the 1950s 
(Wilson, 1971). As well as trout, Wilson et al. (1975) noted that roach, perch, eel and three-
spined stickleback were present, with pike introduced illegally in 1990 (Ibbotson & Klee, 
2002). Concerns about the threat of pike to the trout fishery resulted in the instigation of an 
annual pike removal programme. In 1996, for example, gill netting removed 37% of pike 
large enough to consume trout (Ibbotson & Klee, 2002). Although less than 4% of pike were 
found to have consumed trout, they contributed >50% to the total biomass of food consumed 
because of their large size, and this increased to 97% during the trout fishing season (as an 
outcome of increased stocking). Despite this, of the 35 tonnes of trout stocked in 1996, the 
predicted loss through pike predation was less than 7% (Ibbotson & Klee, 2002). 

Information regarding the current ecology or management of Chew Valley Lake is apparently 
sparse, despite a doubling of trout stocking rates since 1985 (Ibbotson & Klee, 2002). In 
total, Chew Valley Lake received 53 500 trout in 2002, 57 500 in 2003, and 50 000 in 2004, 
and it is inevitable that stocking such large numbers of fishes impacts upon the ecosystem 
functioning and trophic status of the water body, as described in Section 3.3. In addition, the 
large numbers of waterfowl and gulls (Laridae) that congregate on the reservoir are likely to 
increase nutrient loading through guanotrophication. Notwithstanding, the current condition 
of the reservoir is considered favourable. 
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4. GUIDANCE FOR STOCKING AND INTRODUCING FISHES TO DESIGNATED 
NATURAL HERITAGE SITES 

4.1 Strategy and management of fish stock enhancement 

The previous sections have outlined the range of activities that constitute stock 
enhancement and the threats and issues posed by stock enhancement activities, especially 
when uncontrolled. A number of issues arise that need to be addressed if stock 
enhancement programmes are to be carried out in an ecologically acceptable, socially 
responsible, technically feasible and cost-effective manner. In particular, the threats posed 
by fish stock enhancement programmes are especially insidious because few management 
measures exist to overcome any adverse effects. Furthermore, many stock enhancement 
programmes appear to have been unsuccessful because of poor project planning and poorly 
defined objectives (Cowx 1994a, b, 1999). Consequently, there is a need to adopt a strategic 
approach to fish stock enhancement activities to both improve overall success and minimise 
impacts on the ecological functioning of recipient water bodies. 

To this end, a number of guidelines or codes of practice are available in the public domain. 
Unfortunately, these are voluntary in nature and mostly focus in the risks associated with 
stocking and introductions (see IUCN, 1987, 1995; EIFAC, 1988; ICES, 2005 for examples). 
There is a requirement for more information on the ecological, genetic and pathological 
impacts of stocking and introduction linked to the economic and social aspects of fisheries 
enhancement programmes, to aid decision-making. In this respect, the relative merits and 
cost effectiveness of stocking of different life stages, and at different times of the year, could 
be useful in determining whether stocking contributes to improved stock status (Aprahamian 
et al., 2003). Integral within any decision-support tool is the inclusion of protocols to ensure 
that stocking and introductions are conducted in the most effective manner to maximise the 
success of the activity.  

Cowx (1998a, b) presented a strategy for the management of stocking proposals that 
identified the different levels of data collection and processing required, and presented 
critical decision levels with some relevant queries (Fig. 1). Cowx (1998c) stated that stocking 
and introductions should be rejected if the answers to any of the queries in the strategy are 
negative. This protocol is essentially divided into six components, namely: (1) identification 
of the objectives of the stocking programme; (2) identification and (3) evaluation of the 
management options, including assessments of potential ecological and environmental risks; 
(4) choice of management options; and (5) implementation and (6) monitoring of the 
activities. The principle behind the strategy is a logical review and decision process for the 
holistic evaluation of stocking exercises, integrating ecological, fishery, socio-economic and 
implementation considerations. At each stage of the process, decisions have to be made 
about the acceptability of potential impacts of stocking or introduction. This decision 
framework forms the basis of the EA’s ‘Fish Stocking Work Instruction’, and could form the 
basis for supporting decision-making for stocking of fish within designated natural heritage 
sites in Scotland by the apprpropiate authority. Details of each step in the decision 
framework are provided in Appendix 1 and referred to in the simplified procedure proposed 
for stocking of fish within designated natural heritage sites in Scotland (Section 4.2). This 
protocol is recommended because of the complexity of undertaking a full risk assessment for 
each stocking project and the need to streamline the process. This should, however, not 
circumvent any difficult decisions if the potential risks are deemed unacceptable or if there is 
uncertainty about the outcome of any stocking programme. Under these circumstances a full 
risk assessment, as outlined in Appendix 1, should be undertaken.  
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Figure 1. Outline protocol to support evaluating a stocking programme to minimise the 
potential risk, maximise the potential benefit and monitor the success of the project. Review 
boxes on the left illustrate the different levels of data collection and processing, whilst 
decision boxes on the right provide the respective decision levels with some relevant 
questions. The stock enhancement activity should be rejected if answers to any of the 
questions are unacceptable (modified from Cowx, 1998a).   

PROPOSAL FOR INTRODUCTION 

Review of management policy: 
 analysis of policyobjectives 
 analysis of sectoral objectives 
 analysis of alternative species or 

startegies 

Review of ecological 
considerations: 
 environmental factors 
 interspecific interactions 
 operational constraints of proposed 

species 
 genetics and disease 
 environmental impact of introduction 

Review of aquaculture 
considerations: 
 yield potential 
 effects on target fish stocks 
 effects on fishery in general 
 distribution of catch by fisher groups 

Review of socio-economic factors: 
 financial costs and benefits 
 social benefits and constraints 

Review of implementation 
constraints: 
 availability of biological material 
 transportation 
 institutional support 
 credit 
 ownership 

Review of the available information 
and methods: 
 ecological uncertainty 
 economic uncertainty 
 social uncertainty 

DECISION BOX I 
1. Are the objectives of the introduction acceptable? 
2. Is the introduction necessary to achieve the 

management objectives set? 

DECISION BOX II 
1. Are the ecological conditions unfavourable? 
2. Are there any negative impacts on natural fish 

stocks? 
3. Are there any negative impacts on other 

species? 
4. Are there any genetic and disease risks? 

DECISION BOX III 
1. Are the effects on the quality and quantity of fish 

positive? 
2. Are the effects on the stability of the catch 

positive? 
3. Are the effects on the total yield positive? 

DECISION BOX IV 
1. Are costs of aquaculture development programme 

justified from economic and/or social perspectives? 

DECISION BOX V 
1. Are the quality and quantity of target organisms 

required for introduction programme available? 
2. Is appropriate expertise and institutional support 

available? 
3. Is appropriate financial support available? 
4. Have the import criteria been defined? 

DECISION BOX VI 
1. Can ecological uncertainty be managed? 
2. Is the economic uncertainty acceptable? 
3. Is the social uncertainty acceptable? 
 

IMPLEMENTATION 

YES - ACCEPT 

YES - ACCEPT 

YES - ACCEPT 

YES - ACCEPT 

NO - ACCEPT 

YES - ACCEPT 

NO 
REJECT

YES 
REJECT

NO 
REJECT

NO 
REJECT

NO 
REJECT

NO 
REJECT
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4.2 Protocol for stocking of fish within designated natural heritage sites  

4.2.1 Context 

The previous section provided a detailed analysis of the issues and mechanisms that need 
to be considered when planning a fish stocking programme. The guidelines highlight the 
various impacts that could potentially arise in the context of a decision-support tool to inform 
managers and policy makers. The procedures and decisions taken are framed around a risk 
assessment procedure that accounts for scale of the likely environmental, ecological, 
genetic, disease and socio-economic consequences (impacts or benefits) of the stocking 
event and the degree of uncertainty about whether the impacts will arise. Guidance is also 
provided to inform decisions on what species should be stocked, sourcing of stocking 
material, when and how to stock to maximise success. As such, the guidance describes the 
minimum standards of environmentally friendly, ethically appropriate and - depending on 
local situations - socially acceptable stocking programmes, and provides a protocol to make 
strategic decisions on whether to stock a particular water body. This section offers guidance 
on the information that should be made available to the regulatory authorities in Scotland to 
aid decision-making of proposed fish stocking events, with particular reference to designated 
natural heritage sites. It draws on the provisions of the generic guidance outlined in 
Appendix 1. 

4.2.2 Legislative context 

Section 35 of the Aquaculture and Fisheries (Scotland) Act 2007, which inserts a new 
section 33A into the Salmon and Freshwater Fisheries (Consolidation) (Scotland) Act 2003, 
makes it an offence for any person to intentionally introduce any live fish or spawn of any 
fish into inland waters, or possess such with the intention of introduction without previous 
written agreement of the competent authority. The principal aim of these provisions is to 
protect native biodiversity from the consequences of introductions of non-native fish into 
Scottish freshwaters. The provisions apply to all introductions of freshwater fish including, 
salmon, trout and coarse fish to any inland Scottish water system. The legislation became 
active on 1 August 2008.  

Marine Scotland Science (MSS) is the competent authority that deals with most applications 
to introduce fish into lochs, rivers or reservoirs. Upon receipt of an application, MSS checks 
whether the site is within a designated natural heritage site. In such cases, MSS consults 
with SNH. Where the application refers to a location outwith a designated natural heritage 
site, MSS will not consult SNH unless there is good reason to do so – such as a proposal to 
introduce a species of high conservation risk, or a proposal that would adversely impact on a 
designated natural heritage site. 

Where a District Salmon Fishery Board (DSFB) operates, and the fish to be introduced are 
salmon or sea trout, then the relevant DSFB will administer any application from individuals 
or other bodies who wish to introduce fish. The DSFB will issue written agreement or refusal 
to the applicant. Currently, there is no obligation for DSFBs to consult SNH. However, the 
Association of Salmon Fishery Board (ASFB) stocking policy indicates this mechanism 
should take place where the stocking is within a designated natural heritage site. Where the 
stocking of salmon is proposed within or connected to a site designated as an SAC for that 
species, or freshwater pearl mussel, the DSFB must adhere to the requirements of the 
Habitats Directive and undertake a full appraisal of that activity against the conservation 
objectives of that site. The collection of salmon broodstock, an activity licensed by Marine 
Scotland Policy, must also undertake a similar appraisal prior to the issuing of any licence for 
that purpose.  
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4.2.3 Proposed decision framework for stocking of fish within designated natural heritage 
sites  

As previously indicated, the generic workflow model provided in Figure 1 outlines the key 
issues that should be considered when any stock improvement activity is proposed (i.e. 
ecological, genetic, disease, social and economic factors; see Appendix 1 for details). In 
many cases, however, stocking has been taking places for decades and the protocol needs 
to be tuned to local circumstances. In the context of this document, the relevant 
circumstances are stocking within designated natural heritage sites in Scotland. The 
overriding issue surrounding stocking in designated natural heritage sites is that there should 
be no damage to the site, particularly with respect to the designated features. This requires 
not only an assessment of the status of existing fish stocks and ecological functioning, but 
an appraisal of the condition of the water body, and the natural and artificial factors that 
influence the condition of the site, together with an assessment of the likely impacts of any 
proposed stocking activity. A mechanism for achieving this objective is outlined in Figure 2. 
This leads the developer through the process and outlines the information that is required by 
the regulator, in this case MSS or the DSFB - both in consultation with SNH, to make an 
informed decision on whether the stocking should be permitted. The flowchart draws on 
information outlined in the generic framework but also cross references to queries that will 
be raised by SNH (Box 1) and will require answers/resolution with reference to possible 
adverse effects on the designated site. Within the framework, decisions on whether a 
stocking event should be permitted should be based on scientific evidence not anecdotal 
information, and the precautionary approach should be adopted if information is lacking and 
the risks are considered unacceptable by the regulatory authority.  

In addition, it is desirable that only species appropriate to the receiving water body are 
considered for any stock enhancement activity. The Scottish Government has developed a 
matrix that outlines those species acceptable for particular water body types in Scotland 
(Table 3) and this should be consulted to avoid any unnecessary applications that will not be 
approved by the regulatory authorities. 

One of the biggest problems encountered when consenting a stocking operation is 
determining the correct stocking density. If too many fishes are present, increased mortality 
rates, through predation and starvation, reduced growth rates and increased dispersal, 
generally follow. In worst-case scenarios, overstocking can lead to habitat deterioration and 
a reduction in the performance of the fishery. For fisheries already subjected to stocking 
activities, lower stocking densities should reduce the potential for competitive interactions 
between native and stocked fishes, as pressure for finite resources is reduced. This is of 
particular importance for water bodies that support unique strains of brown trout, charr and 
whitefish. Reduced stocking densities should also minimise any detrimental impacts on the 
ecosystem as a whole. 

A review of typical stocking densities, mostly accessed from the grey literature, is provided in 
Appendix 2 and summarised in Table 4 for the main species stocked in differing types of UK 
waters. The range of densities/biomass stocked varies considerably depending on the 
species or water body type.  What is evident from the review is that stocking densities are 
not explicitly driven by the objective of the enhancement programme but often by the 
financial resources of the fishery owner (ability to purchase stock) and/or economic 
objectives of the fishery. The latter is particularly true for improved and intensively stocked 
coarse fisheries (Figure 3) where the sole objective is to improve fishery performance 
(angler satisfaction) in small water bodies (North, 2002). These drivers are not necessarily 
commensurate with providing an ecologically balanced and socially and environmentally 
acceptable stocking density/biomass. For example, stocking in improved and intensive 
fisheries is well beyond the standing crop (biomass) found in natural fisheries (usually < 250 
kg ha-1; Figure 3) and thus typically require supplementary feeding and other management 
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Figure 2. Proposed decision framework for stocking of fish within designated natural 
heritage sites.  
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BOX 1: ISSUES TO BE CONSIDERED BY PROPONENT AND EVALUATOR WHEN 
CONSIDERING STOCKING OF FISH WITHIN DESIGNATED NATURAL HERITAGE 
SITES. NOTE a negative response or proposal not supported by adequate scientific evidence 
should elicit a rejection. 

 Does the proposed stocking event threaten the conservation status of protected species or the 
conservation objectives of a designated site? (see NOTES below). 

 Has sufficient ecological justification been provided by the applicant for introducing fish to a 
designated site? (refer to Appendix 1 Look-up Boxes A6) 

 Have alternative fisheries management options been considered in full (refer to Appendix 1 Look-
up Box A2) 

 Is sufficient scientific evidence provided to demonstrate that the fish (number/biomass and 
species: NOTE 2) to be stocked will not negatively impact species or habitats of conservation 
concern through: 

 competition (between stocked and wild fish populations if the numbers of fish added to the 
waterbody exceed its carrying capacity) (refer to Appendix 1 Look-up Box A6),  

 predation on either native fish or other aquatic biota of conservation value (refer to Look-up 
Boxes 6),  

 disruption of ecosystem functioning and water quality by, for example, the selective removal of 
zooplankton by introduced fish, the disturbance of river or loch sediments; 

 the spread of disease, parasites and invasive non-native species (sourced from a supplier who 
can guarantee stock is will not result in the importation of disease, parasites or invasive non-
native species (such as North American signal crayfish) (refer to Appendix 1 Look-up Box A8); 

 genetic introgression (refer to Appendix 1 Look-up Box A7); 

 increasing the rate of exploitation of natural populations of fish, by man and other predators; 

 has reference been made to accceptablity of proposed species and the receiving environment 
(Table 3). 

 Has the level and timing of fish introduction (stocking) has been carefully considered and is the 
number and biomass of fish to be introduced appropriate for the target water body. Relevant 
details should be provided (e.g. are the fish to be stocked diploid or triploid (sterile)). NOTE: 
maximum recommended levels of stocking are such that the final densities do not exceed <100 kg 
ha-1 for brown or rainbow trout and < 300 kg ha-1 for coarse fish (refer to Figure A3).  

 Is the water body isolated and not contiguous with open waters (i.e. are fish secure in the stocked 
water body and unlikely to escape into the wild). 

 Is a contingency plan to monitor any potential impact and respond to any adverse scenario been 
provided? (see section A3.9) 

NOTE 1: An appraisal of the consequences for natural heritage features (including notified features) 
should be included. 

NOTE 2: Species that are not appropriate for introduction are listed on Schedule 9 of the Wildlife & 
Countryside Act 1981 or Schedule 1 of the Conservation of Native Freshwater Fish Stocks: The 
Prohibition of Keeping or Release of Live Fish (Specified Species) (Scotland) Order 2003). These 
include Arctic charr, vendace or powan. It is also recommended that any species not locally native to 
either that catchment, or native to Scotland, (e.g. barbel, bleak, bream, chub, dace, gudgeon, tench, 
orfe, silver bream, ruffe and grayling) are included under the schedule. 

NOTE 3: SNH consider it inappropriate to stock any species into any open water habitats within a 
catchment where it does not currently exist, or where there is no historical evidence to support its 
presence there in the past; 

NOTE 4: SNH generally consider it inappropriate to introduce fish of any species into naturally fishless 
lochs or lochans; 

NOTE 5: SNH consider it inappropriate to introduce Atlantic salmon that originates from a catchment 
other than that proposed for introduction. In some cases, this may also apply to the movement of 
salmon at finer geographical scales;  

NOTE 6: SNH consider it inappropriate to stock salmonids above naturally impassable waterfalls, 
unless a satisfactory case has been made for doing so. 
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Table 3. List of species and list of criteria that must be satisfied before a species can be 
considered acceptable by the Scottish Government for stocking into a particular water body 
in Scotland. 
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Type of Area Dip Trip
Open water within a catchment where there is no 
evidence species present locally or of local 
historical stocking
Fishless lochans
Water has nature conservation designation
Introduction could affect nature conservation site
Open water where species has been present in the 
past (either by stocking or native) but species not 
currently present ? ? ? ? ? ? ? ?
Closed ARTIFICIAL water within a catchment where 
species is absent
Open water within a catchment previously stocked 
with species and with extant local wild or native 
population A
Open water with screens within catchment where 
species is locally native or naturalised A
Closed water within a catchment where species is 
already native or naturalised

Other types of waterbody

B
ro

w
n

/ s
e

a
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u
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Notes:  
Red - presumption against INTRODUCTION except in exceptional cases in support of conservation. 
Amber - application will be considered further. 
Green - applications will in general be acceptable 
1. For each species involved, questions in left-hand column of above matrix are to be considered in 
order from top to bottom. 
2. Localness of source stock will be key factor in assessing amber applications for brown trout and 
salmon and some of the "Other species" 
3. Presumption against ESTABLISHMENT of NON-NATIVE fish species (highlighted in red and 
capitals) to new catchments OR DISRUPTION OF ENVIRNONMENT/BIODIVERSITY 
? = Species which have limited distribution as native or stocked in the past and should be given 
greater consideration before decision of impact is made. 
A = brown trout of fish farm origin to open still waters that had been regularly stocked, and brown 
trout from breeding programmes with wild local broodstock to open still waters to be treated as 
Green for the present. 

 
interventions such as aeration. The abundance of fish in these intensively stocked fisheries 
also raises questions about fish welfare and health, with concerns expressed by both 
regulatory authorities and animal welfare lobby groups (Taylor et al., 2004; Cowx et al., 
2007). In recent years, there has been a shift in demand from natural to high performance 
fisheries. Intensively stocked fisheries are concentrated around urban areas. It is likely there 
will be considerable pressure to establish more of these fisheries in the future. Given the 
concerns outlined above, due care must be taken to ensure these fisheries are not 
overstocked or stocked with inappropriate species to the detriment of fish welfare and wider 
ecosystem functioning. 

Determination of optimal stocking densities should be based on assessment of the carrying 
capacity of the receiving water body, and be commensurate with the risk and scale of the 
stocking programmes. For lakes, the optimal density can be determined from relationships 
between environmental parameters such as shore-line development, water depth and fish 
biomass (Leopold & Bninska, 1984). This has been further developed by Medley & Lorenzen 
(2006) to estimate optimal stocking density for culture-based fisheries. Unfortunately this 
model relates to fisheries where stocks are exploited, and not necessarily to recreational put-
and-take or catch-and-release fisheries, where densities are often kept artificially high to
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Table 4. Ranges of stocking densities/biomasses reported for a number of fish species and 
life stages in various water bodies. Specific studies (with references) are detailed in 
Appendix 2. 

Species Life stage Water body 
type 

Densities / 
Biomasses 

Comments 

Atlantic 
salmon 

Green ova Rivers 0.4-59.0 m-2 

Atlantic 
salmon 

Fry Rivers 0.60-2.11 m-2 

Atlantic 
salmon 

0+ parr Rivers 0.15-0.40 m-2 

Atlantic 
salmon 

1+ parr Rivers 0.05-0.20 m-2 

Recommended densities for 
stocking to maximise smolt 
output, depending upon habitat 
quality  

Brown trout 0+ and 
>0+ 

Rivers  0-478 kg ha-1 Densities and biomasses 
derived for 20 streams 
containing freshwater pearl 
mussels (see Geist et al. 2006) 

Rainbow, 
brown and 
brook trout 

Adult Lakes 2-733 ha-1  

Sea trout Fry Rivers 0.40-1.50 m-2  

Sea trout 1+ parr Rivers 1.0-2.0 m-2  

Coarse fish n/s Still waters 10-500 kg 
ha-1 

Approximate natural density 

Coarse fish n/s Stillwaters  10-126 000 
ha-1  

Improved and intensive 
fisheries 

Barbel Adult Stillwaters  >500 kg ha-1  

Common carp Adult Shallow pond  
mesocosms  

174->200 kg 
ha-1 

 

increase angler satisfaction. No definitive relationships are available for calculating stocking 
densities of different species in rivers; these are generally based on the experience of the 
fishery managers. However, when calculating stocking densities, consideration must be 
given to the existing stock biomass, the residual stock remaining from previous stocking 
events, and allowances should be given for migration/dispersal, predation and predicted 
survival of the stocked fishes. Values of between 10 and 80% annual mortality are given in 
the literature (EIFAC, 1984), so compensatory densities will be difficult to determine. It is 
most important to ensure that overstocking is avoided.  

Given the lack of definitive data and/or procedures for calculating stock densities, where 
there is firm evidence that stocking will not damage a designated natural heritage site, then 
recommended stock levels within designated natural heritage sites or elsewhere in 
Scotland should be such that the final densities in the receiving water body do not 
exceed 100 kg ha-1 for brown or rainbow trout, or 300 kg ha-1 for coarse fish. These 
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stock levels will maintain quality fisheries and prevent overstocking of the water body and 
thus avoid disruption of ecosystem functioning and loss of biodiversity. 
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Figure 3. Relative abundance by biomass (kg ha-1) of fish species in three categories of 
stillwater coarse fishery in England and Wales (adapted from North, 2002). 

 

To improve understanding of the most appropriate stocking density all projects 
should have in place the methodology to enable adequate monitoring of progress 
and, ultimately, success or failure.  

Finally, before stocking programmes are undertaken a thorough evaluation of the 
reasons for the action should be examined and alternative approaches to 
enhancement (e.g. habitat improvements or better fisheries management) should be 
considered. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Stock enhancement programmes 

Stocking is an important tool in the management of fisheries, whether for commercial, 
recreational or conservation purposes. However, the threats posed by fish stock 
enhancement programmes, especially introductions, are particularly insidious because few 
management tools to overcome any adverse effects are available (see Britton et al., 2011b). 
It is recommended, therefore, that the precautionary approach should be adopted with 
regard to the stocking and introduction of species, particularly in designated natural 
heritage sites or in the case of non-native fishes. It is also recommended that a 
strategic planning approach to stocking, similar to that which is expounded through 
these guidelines, is adopted. This draws the attention of the fishery managers and owners 
to the many problems that must be resolved within a wider fisheries sector context before 
stocking programmes are likely to achieve their objectives. As part of this approach, a 
number of aspects should be considered at an early stage (expanded from Li & Moyle, 1994 
and Cowx & Godkin, 1999): 

 whenever stocking or introduction of fishes is being considered, the aims and specific 
objectives of the exercise must be clearly defined and adhered to. Also, the potential 
economic and environmental advantages should be demonstrated, although it is 
recognised that in some situations (e.g. applications to stock or introduce fishes for 
conservation purposes) there may be no economic imperative. These should be 
matched against the disadvantages or problems that may ensue. 

 before stocking programmes are undertaken a thorough evaluation of the reasons for the 
action should be examined and alternative approaches to enhancement (e.g. habitat 
improvements or better fisheries management) should be considered/discounted. 

 if it is possible to remove or minimise the causes of declines in fisheries, this course of 
action should be taken, and the fisheries may then recover without stocking. Habitat 
improvement is the most desirable alternative because it should lead to long-term 
sustainable improvements with minimal deleterious ecological impacts. 

 the wider issues and constraints that are likely to affect the long-term success of stocking 
programmes should be reviewed and considered in the design of enhancement projects. 

 stock enhancement activities should be considered mainly for systems that have been so 
altered by human activity that original fish communities have been disrupted or 
eliminated and there is no possibility for restoration of the habitats and enhancement of 
the community based on residual or relict stocks. 

 when evaluating stocking as a possible management tool, the relative benefits and costs 
of all options should be considered. The “do nothing” option should not be disregarded 
but should be considered as fully as any of the other options under discussion, despite 
possible public pressure to stock. 

 regulators must consider the potential long-term implications of stock enhancement 
activity on the ecosystem, and should not be guided solely by short-term economic 
gains. The entire catchment and any adjacent water bodies must be taken into account 
when considering the proposals. 

 the potential for proposed stocking programmes to introduce new parasites or diseases 
into recipient systems should be assessed through risk assessment protocols.  
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 the strategy for any programme of stocking, translocation or introduction should be 
carefully tailored to suit the species in question, taking into account its entire suite of 
ecological prerequisites, so as to maximize the chances of success. 

 the potential adverse impacts of stocking in terms of environmental, genetic and 
ecological interactions should be considered fully. The ‘precautionary principle’ should be 
adopted where foreseen adverse impacts cannot be mitigated, particularly in the case of 
designated natural heritage sites. Species that might be sensitive to the proposed 
introductions should be identified in the receiving rivers and lochs. Special consideration 
should be given to rare species or those most ecologically similar to the species 
proposed for introduction. 

 introductions should be considered mainly for water bodies that are sufficiently isolated 
to prevent the uncontrolled spread of introduced species. Since most problem waters are 
not isolated, the best alternative is to evaluate the potential effects of introductions on all 
connected waters, no matter how distant. Nearby unconnected waters should also be 
evaluated, as they will be at increased risk of illegal fish transfers. 

 significant new stockings or introductions should be evaluated by an independent review 
panel of scientists familiar with ecological principles and aquatic systems. It is important 
not to be hasty with introductions, as most effects are irreversible. 

 all projects should have in place the methodology to enable adequate monitoring of 
progress and, ultimately, success or failure. This should include a mechanism of 
disseminating the outcomes to minimize the risks of any unforeseen adverse effects in 
future exercises. 

 a series of guidelines should be produced for all species that are stocked or introduced, 
clearly defining the most effective protocol for deciding whether or not stocking should 
take place, how it should be implemented and the potential impacts of such activities. 

When assessing the viability of stocking programmes an evaluation of the most cost-
effective options in relation to expected benefits should be undertaken. All too often the 
strategy is to make do with existing circumstances, whereas a little forward planning may 
improve the outcome considerably.  

It is recommended that all stock enhancement programmes are properly formulated and 
planned before implementation to avoid indiscriminate and often futile stocking activities. 
The expected outcome for particular stocking exercises should be compared with wider 
fisheries sector objectives, and constraints that are likely to prevent a successful outcome 
should be considered in all appraisals. To this end, practical guidelines for stocking various 
fish species in a range of water-body types to meet specific objectives should be made 
available through government agencies and international advisory bodies. Finally, it is 
recommended that stock enhancement programmes, existing as well as proposed, should 
be independently assessed to ensure that the wider environmental, ecological and socio-
economic issues have been thoroughly reviewed. 

5.2 Priority hazards and future R&D 

Section 3 identified the potential risks associated with stocking or introducing fishes into 
designated natural heritage sites. Given the current paucity of knowledge on the impacts of 
stocking and introduction of fishes, particularly on ecosystem functioning, significant gaps in 
knowledge were identified, limiting the efficacy of stocking policy for natural heritage sites. 
This section highlights priority hazards (i.e. those considered to be high risk or for which 
understanding of the potential risks is limited), and develops a strategic approach to the R&D 
required to evaluate the hazards of stocking or introducing fishes into designated natural 
heritage sites. 
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Overall, research needs to address the following question, “Does stocking or introducing 
fishes pose a threat to the conservation status of designated natural heritage sites?” Within 
this overarching question, the key areas for which information is lacking are: 

 possible changes to ecosystem functioning; 

 impacts of nutrient import to receiving systems; 

 risks to native trout, charr, whitefish and lamprey populations; and  

 threats to designated invertebrate and macrophyte species. 

The three main issues underlying these priority hazards are: 

 predation; 

 competition; and  

 eutrophication. 

The relative significance of each of these potential impacts depends partly upon the 
conservation interests of particular natural heritage sites. Moreover, the impacts of fish 
stocking will vary between water bodies, depending upon the relative characteristics of their 
respective ecosystems and stocking programmes. For example, eutrophication may be of 
considerable concern for water bodies designated for their aquatic macrophytes, but of less 
direct importance for those designated for their waterfowl populations. Similarly, predation by 
stocked fishes may be of particular concern for water bodies containing designated 
invertebrate or fish species, but (generally) of less importance in water bodies designated for 
their macrophytes. Ultimately, however, it is the combination of each of these potential 
impacts that requires research, to assess whether stocking or introducing fishes poses a 
threat to the conservation status of the receiving water bodies. This section provides 
suggestions for R&D modules to address the dearth of knowledge in these areas. 

5.2.1 Predation 

Stocked or introduced fishes pose a direct predation threat to populations of native (or 
translocated) trout, charr and whitefish, and designated invertebrates (Sections 3.3 & 3.4). 
For example, it is thought that one of the translocations of vendace may have been 
negatively impacted by stocking activities, through either predation of juvenile vendace or 
competition for food (C.W. Bean, pers. comm.). To address this issue, fish diets could be 
assessed using a combination of three approaches. Firstly, the gut contents of fishes caught 
by anglers could be retained for analysis. This would require a field scientist to visit the 
fishery on a number of occasions over the season to remove alimentary tracts from fishes 
caught by anglers. Additionally, diet information could be obtained using non-destructive 
methods (e.g. stomach pump) during fisheries surveys. Finally, fishes caught during fisheries 
surveys could be retained for analysis in the laboratory, although this could create problems 
with the fishery owners and may not be a viable option. 

Although predation on fish eggs is unlikely to be a high-risk hazard, the issue may be raised 
by anglers. As such, the full risk assessment may need to provide scientific evidence to allay 
such concerns, including for charr and whitefish. However, assessment of the consumption 
of eggs by fishes is extremely difficult. Firstly, it is unlikely that angling clubs will give 
permission for fish surveys during the spawning period. In addition, it is not likely to be 
possible to determine whether any eggs found in the diet were consumed during active 
foraging within redds or through ingestion of loose eggs. Furthermore, unless sampling is 
intensive, the probability of catching fishes with eggs in their guts is low, due to the rapid 
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digestion of eggs. Dietary analysis, therefore, may not be feasible, so proof that egg 
predation is not a concern may only be possible by inference from spatial ecological studies. 

Predation by stocked or introduced fishes may also have an influence both on nutrient 
budgets and ecosystem functioning in general (Sections 3.1 & 3.2). The key area that 
requires further research is the relative frequency of piscivory and zooplanktivory in stocked 
trout, and the impacts that these feeding strategies (and zooplanktivory by coarse fishes) 
have upon nutrient cycling, trophic cascade and ecosystem function. It will also be important 
to consider that there may be indirect impacts on plankton demography caused by fish 
stocking. Whether trout are piscivorous or planktivorous/benthivorous is partly determined by 
fish size. This has implications for the sizes at which fishes should be stocked, and is likely 
to differ between trout species, and according to the relative availability of different food 
groups. 

The relative frequency of piscivory and zooplanktivory in stocked trout can be determined 
from diet analyses, as described above. A range of statistical techniques could be employed 
to investigate the impacts of fish predation on nutrient budgets and ecosystem functioning. 
For example, if appropriate data can be obtained, the impacts of various scenarios (e.g. fish 
densities and piscivore:planktivore ratios) upon nutrient fluxes and ecosystem functioning 
could be modelled. Alternatively, food intake and the impacts on zooplankton demography 
could be determined from bioenergetics models (Mehner, 1996; Karjalainen et al., 1997; 
Penczak et al., 2002). Stable isotope analysis may also be useful to quantify the transfer of 
energy between trophic levels (Grey et al., 2004; Cunjak et al., 2005; Stenroth et al., 2006; 
Yokoyama et al., 2006). 

5.2.2 Competition 

Competition with stocked or introduced fishes poses a direct risk to native salmon, trout, 
charr and whitefish populations (Section 3.3). Research to investigate competition is 
required to better understand the risks of stocked or introduced fishes competing with wild 
individuals, and affecting the viability of wild populations. Such research should be 
undertaken in tandem with assessments of displacement (see below) to enable the effects of 
competition to be elucidated. Population parameters, such as abundance, growth and 
mortality of wild and stocked fishes, should be assessed from regular surveys and analysis 
of fishery catch statistics. Any changes in these parameters should be evaluated with 
respect to habitat characteristics and historical data. Competition for food resources between 
stocked or introduced fishes and native trout, charr and whitefish populations could be 
investigated through diet analyses, as described above. In addition, RNA/DNA ratio analysis 
could be used to investigate the impacts of fish stocking and introduction on the nutrition and 
condition of native fishes (Buckley et al., 1999; Caldarone et al., 2006). 

Given the difficulties associated with the direct observation of fish behaviour in the wild (see 
Bachman, 1984), studies of aggression and competition are most frequently undertaken in 
laboratory-based or artificial stream facilities. It is recognised, however, that such trials may 
not be feasible because of cost restrictions. Moreover, laboratory-based observations are 
not necessarily a reliable predictor of behaviour in the wild. Thus, it is proposed that 
evidence for differences in aggression and competitive behaviour are inferred from field 
studies of stocked systems. Population parameters, catch statistics (where ecological R&D 
is linked to assessment of fishery performance), and retention and displacement of wild 
fishes can be used to assess aggressive and competitive behaviour. Additionally, the spatial 
ecology of stocked/introduced and wild fishes could be assessed using telemetry techniques 
(radio tracking). Telemetry can provide detailed information on fish movements and 
distributions, but imposes higher project costs than other methods. 

Research into the potential for stocked or introduced fishes to interfere with the spawning of 
wild stocks requires an assessment of the spatial ecology and behaviour of stocked 
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individuals during the spawning period. It is anticipated that it will be difficult (and too 
expensive in terms of man-power) to make accurate, direct observations of stocked fishes in 
spawning areas. However, telemetry could be used to assess the association of stocked 
fishes with native spawning stocks. The difficulty associated with tracking fishes in large 
areas of open water minimises the value of this method in stillwater fisheries. Thus, fishes 
should be tagged and released into the still water of capture, but monitoring should occur 
around spawning habitats in accessible tributary streams, to determine whether stocked 
fishes are associated with spawning behaviour. Ideally, fishes should be captured and 
tagged during end-of-season surveys, thereby allowing them ample time to recuperate. 
Monitoring of radio-tagged fishes should be undertaken during the winter, focusing on the 
reproductive period. A number of stocked and wild fishes will need to be tagged to determine 
any differences in spatial ecology between the two groups. 

The potential influences of stocked or introduced fishes on the post-spawning recovery of 
native fishes are likely to be difficult to determine. The most suitable way to assess this is 
probably to study the age structure of native fish populations to identify the survival of fishes 
past maturity, and the capacity for individuals to spawn the following year. Additionally, the 
relative condition of fishes post-spawning could be assessed prior to the fishing season. In 
practical terms, it is probable that this could be assessed only once. To obtain valid, 
meaningful results from both of these approaches, control fisheries (both stocked and un-
stocked) must be assessed for post-spawning recovery to enable the relative influence of 
stocked fishes to be elucidated. This element of research should make full use of existing 
studies into the spawning behaviour of stocked brown trout (e.g. Shields et al., 2005). 

Competition with stocked or introduced fishes also poses an indirect risk to designated 
invertebrates, nutrient status and ecosystem functioning (Sections 3.1, 3.2 & 3.4). This 
element of research is required to address the possibility of shifts in habitat use or diets of 
native fishes following stocking or introduction of fishes. Shifts in habitat use could be 
identified through assessments of the spatial ecology of stocked and wild fishes, as 
described above, while the diets of native fishes could be compared before and after 
stocking of fishes. However, care is needed to account for natural variations in habitat use 
and diet, for example because of seasonal fluctuations in prey availability. 

5.2.3 Eutrophication 

Eutrophication poses a direct risk to native trout, charr and whitefish populations, 
invertebrate and macrophyte species, and ecosystem functioning as a whole (Sections 3.1, 
3.3 & 3.4). There are a multitude of processes by which this can occur, many of which are 
complex and poorly understood. Before the effects of eutrophication can be modelled, a 
nutrient budget should be calculated (see Johnes et al., 1996; Moss et al., 1996). Included in 
this should be the contributions of fish-farm effluent, supplementary feed and bird faeces to 
the nutrient budget. A range of statistical techniques can then be employed to investigate the 
impacts of eutrophication on ecosystem functioning. For example, if appropriate data can be 
obtained, the impacts of various nutrient loading scenarios upon productivity and food-web 
structure could be modelled. In addition, stable isotope analysis may be useful to quantify 
the transfer of energy between trophic levels, and the inputs of various sources of nutrients 
(e.g. sewage treatment works, agricultural run-off, fish farms). 

Regarding fishes, it is often the associated changes in water quality, rather than the nutrients 
themselves, that are limiting. Thus, the tolerable limits of various water quality parameters 
(e.g. dissolved oxygen, temperature) should be investigated for all life stages of trout, charr 
and whitefish, where these are not available. Included in this should be the comparative 
limits of fish species likely to compete with native fishes with increasing productivity. It is 
unknown exactly how eutrophication impacts upon the range of designated invertebrate 
species. Thus, studies should be initiated to determine the likely responses of key species or 
assemblages to increases in trophic state, either directly or indirectly (e.g. through their food 
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and habitats). Similarly, the nutrient tolerances for the various species of designated 
macrophytes should be determined where this information is not available.  

Regarding ecosystem functioning, the key area that requires further research is the impacts 
of gradual, chronic increases in nutrient availability on the relative productivity of 
macrophytes and phytoplankton, together with concurrent shifts in invertebrate community 
structure and biodiversity in general. Useful tools are already available to examine and 
model responses to nutrient increases (e.g. Bennion et al., 2010) but further research is 
required to understand more fully the implications of alterations in ecosystem functioning 
through competition-induced shifts in food-web structure. 
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Appendix 1. Generic protocol for assessment of stock enhancement programmes 

A.1 Context 

Cowx (1994b) proposed a decision support tool for managing whether stocking should be 
permitted or not. The strategy stipulates that stocking for specific objectives should only be 
carried out following a detailed assessment, and only under certain conditions. The 
underlying principle for the management of stocking stipulates that once the objectives for 
stocking have been set, through a thorough assessment of the status and limitations of the 
fishery, a specific stocking strategy is developed to achieve the desired objective. This is 
equivalent to identifying the bottlenecks constraining the potential performance of the fishery. 
Once the fishery has been confirmed as potentially requiring enhancement, scenario 
overviews must assess the critical bottlenecks to the fish population or fishery performance 
and, through this, determine whether stocking of the species is a viable option for 
enhancement. It should then be evaluated against ecological and environmental risk criteria, 
and a cost-benefit analysis should be carried out. Finally, the overall feasibility of the action 
assessed in terms of environmental and ecological risk, bio-economic gain and practicality 
should be evaluated. If at any stage of these assessments the risks, costs, feasibility or 
potential benefits are deemed unacceptable, the programme should be rejected and 
alternative strategies considered. 

Whilst this framework offers generic guidelines for appraisal of stocking activities and 
support for implementation, it is limited in its assessment of risks and uncertainty about 
stocking on fisheries and the environment, and does not necessarily provide support for the 
decision-making process at each stage of evaluation. At each stage of the process, 
decisions have to be made about the acceptability of the risks and uncertainty of certain 
impacts of stocking or introductions, and the ability to manage those risks. This appendix 
develops the decision tree of Cowx (1994b) to accommodate risk and uncertainty as well as 
enhancing protocols associated with other aspects that require decision making, and aims to 
provide a framework for guidelines for stocking fish in conservation areas. It is based on the 
project management approach and describes the sequence of processes that should be 
undertaken when any stock enhancement programme is proposed through to its final 
implementation. Essentially, the activities can be divided into the following phases: 
identification, preparation, appraisal, implementation and evaluation. Each step has a series 
of look-up boxes associated with it that must be adhered to before progressing to the next 
step. Where decisions are required, advancement is only possible where a beneficial 
response is forthcoming. It should be recognised that the protocol outlined is based on the 
premise that no stocking has taken place in the past and that a full evaluation is required to 
ensure that any action is carried out in an ecologically acceptable, environmentally friendly, 
socially responsible and cost-effective manner (although it is recognised that social and 
economic issues are of low priority with applications to stock or introduce fishes to 
designated natural heritage sites). Where stocking has taken place in the recent past it will 
be possible to circumvent several of the steps to utilise knowledge about the outcomes of 
previous stocking events (Go to Lookup Box A5). If the stocking programme is accepted, 
implementation should only be allowed once a suitable post-stocking evaluation scheme is 
incorporated into the programme. The lack of suitable monitoring programmes of historical 
activities has led to uncertainty over the success or failure of schemes, and the inability to 
detect impacts or attribute improvements to the stocking per se (Cowx, 1994b, 1998a, b). 
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A.2 Generic framework for stocking enhancement 

A.2.1 Identification of management objectives (see Look-up Box A1) 

The first step when considering any stock improvement activity must be to ensure proper 
clarification of the management policy and objectives. It is only then that the project proposal 
can be properly formulated to achieve the desired effects. Part of this exercise includes 
establishing whether the stock is below optimum production level or whether the quality of 
the stock (e.g. in terms of age or size distribution) could be improved. This requires not only 
an assessment of the status of existing stocks, but an appraisal of the condition of the water 
body, and the natural and artificial factors that may limit production. Where the recruitment of 
wild fishes has been reduced by anthropogenic disturbance or the fishery is under 
performing, the requirement to protect the residual stocks from genetic impacts of non-native 
fishes remains, and it is unlikely that such species will be a favoured tool for mitigation. In 
these scenarios, mitigation through habitat rehabilitation and associated short-term assisted 
breeding programmes of extant, indigenous stocks is likely to be the preferred option. 
Indeed, the use of non-native fish species in this case may have negative effects on the 
mitigation activities. Therefore, the use of non-native fish species should be restricted to 
fishery enhancement scenarios with the objective of maintaining or enhancing the stocks of 
takeable-sized fish in a put-and-take or catch-and-release fishery. Assessments must be 
based on firm evidence from scientific studies (preferably of a long-term nature to overcome 
shorter-term fluctuations) and not on hearsay or unsubstantiated complaints. This process is 
outlined in Look-up Box A1. 

A.2.2 Alternative stock enhancement strategies (see Look-up Boxes A2 and A3) 

The first criterion is to establish if the fishery is of the desired quality to meet current or 
anticipated future demands, and thus whether there is a need for any stock improvement. 
Where enhancement of the stocks is considered necessary, a number of approaches are 
available, in addition to enhancement stocking, and these should be explored in the first 
instance or the “do nothing” (precautionary) approach adopted (Look-up Box A2). There are 
a number of options available to improve fisheries that do not (negatively) impact on the 
environment or fisheries. One is to alter the ecosystem, to improve both the fisheries and the 
conditions for exploitation (see Templeton, 1984; Cowx & Welcomme, 1998). The second 
option is to adopt traditional management measures that regulate catches and access to the 
fisheries, to manage exploitation pressure. The third option is to promote sustainable angling 
in the general area and at specific fisheries, possibly by developing and promoting ‘wild’ 
fisheries, which are maintained by natural recruitment and are not stocked. Many anglers are 
prepared to pay a premium for quality fishing based on wild stocks, which could offset lost 
revenues that may otherwise have been derived from intensively stocked fisheries. Where 
there are economic or practical constraints preventing alternative strategies, enhancement 
stocking may be desirable to boost performance. 

If production is considered to be below the potential of the system (Look-up Box A1), it is 
important to try and identify the constraints and resolve them before stocking is carried out 
(Look-up Box A3). If no apparent cause can be identified, or if the cause cannot be removed 
or removal is not cost effective, enhancement stocking could be considered, but there is a 
risk that the stocking could fail if the water body is not capable of supporting a sustainable 
population. In such cases, alternative improvement strategies should be considered or the 
“do nothing” approach adopted, with resources concentrated on water bodies that possibly 
could be improved. This does not, however, exclude put-and-take fisheries that are stocked 
to provide catchable-sized fishes for rapid exploitation by anglers and that do not consider 
sustainability through natural recruitment. 
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LOOK-UP BOX A1: OBJECTIVES AND PERFORMANCE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE 1: Fishery performance targets refer to conservation objectives and/or ecologically sustainable 
development, as well as wider socio-economic benefits that are derived from recreational angling and 
net fisheries. This may be problematic if stakeholder (angler) defined targets are not known or 
unrealistic. Anglers may want a high CPUE or a ‘high-quality’ fishing experience, while fishery owners 
may want sustainable, profitable catches. Attention must also be paid to non-extractive stakeholders 
who tend to have different values for water bodies. 

NOTE 2: Where quality information is not available, expert judgement (independent of the fishery 
owner) will have to be used, or the water body compared with nearby water bodies of similar 
character. 

STATUS OF TARGET FISHERY 

Review fishery monitoring data 
and fish catch statistics to assess 
status of fishery. 

POTENTIAL OF TARGET FISHERY 

Assess potential based on predictive modelling 
such as PHABSIM, WFD ecological 
assessment tools developed for Scotland. 

MANAGEMENT OBJECTIVES 

Identify local, regional and national policy 
objectives for fisheries, including fishery 
performance targets. NOTE 1

LEGISLATION 

Review fisheries and conservation 
legislation related to stock 
enhancement in Scotland and 
assess whether the stocking 
proposal fails to meet compliance.  

FISHERY PERFORMANCE 

Compare status with potential for the 
water and evaluate whether fishery 
performance is at optimal level. NOTE 2

FAILURE TO ACHIEVE 

PERFORMANCE TARGETS 

GO TO LOOK-UP BOX A3 

ACHIEVING PERFORMANCE 

TARGETS 

GO TO LOOK-UP BOX A2 

Is the fishery 
achieving its 
performance 

targets? 
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Where the limiting factor(s) can be isolated, efforts should be made to resolve the problems 
before resorting to stocking. If remedial action cannot be taken, because it is either 
impractical or not cost effective, then mitigation stocking could be considered. This is unlikely 
to lead to a sustainable population, however, and fish may have to be stocked on a regular 
basis and appropriate risk assessment should be undertaken (see Look-up Box A4). 

ACHIEVING PERFORMANCE 

TARGETS 

DOES THE FISHERY NEED 

ENHANCEMENT? 

ADOPT PRECAUTIONARY 

MEASURES TO REGULATE 

FISHERY EXPLOITATION 

PATERNS 

IDENTIFY AND IMPLEMENT 

FISHERY ENHANCEMENT 

MEASURES NOTE 1 

PROMOTE 

WILD 

FISHERIES 

ZONES 

PROMOTE 

ANGLING 
HABITAT IMPROVEMENT 

MEASURES 

COMMENSURATE WITH 

NEEDS OF FISHERY 

PROMOTE 

TRADITIONAL 

MANAGEMENT 

MEASURES

IMPROVE 

FISHING 

ACCESS AND 

CONDITIONS 

PREPARE FISHERY MANAGEMENT 
PLAN 

YES 

NO 

LOOK-UP BOX A2: ALTERNATIVE FISHERY ENHANCEMENT STRATEGIES 

NOTE 1: The various fishery enhancement measures proposed are not mutually exclusive and in 
many cases should be considered as complimentary. 

ENHANCEMENT 

STOCKING 

RISK ASSESSMENT PROTOCOL 
GO TO LOOK-UP BOX A4 
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FAILURE TO ACHIEVE 

PERFORMANCE TARGETS 

ARE THE CONSTRAINTS ON 

FISH PRODUCTION AND 

RECRUITMENT KNOWN? 

INVESTIGATE CAUSE AND 

ADOPT PRECAUTIONARY 

MEASURES TO MANAGE 

FISHERY UNTIL PROBLEM 

RESOLVED 

IS IT COST EFFECTIVE TO 

REMOVE? 

REMOVE BOTTLENECK AND IMPLEMENT 

HABITAT IMPROVEMENT MEASURES 

COMMENSURATE WITH NEEDS OF 

FISHERY 

RISK ASSESSMENT PROTOCOL 

GO TO LOOK-UP BOX A4 

YES 

NO 

LOOK-UP BOX A3: ALTERNATIVE FISHERY ENHANCEMENT STRATEGIES 

IS THERE POTENTIAL OR 

OPPORTUNITY TO RESTORE OR 

REHABILITATE? 
NO 

YES 

CONSIDER STOCKING FOR 

ENHANCEMENT 

CONSERVE RELICT STOCK / CONSIDER 

CREATING A FISH HATCHERY FOR 

CONSERVATION PURPOSES 

CONSIDER STOCKING FOR 

RESTORATION 

CONSIDER STOCKING FOR 
MITIGATION CAN THE CAUSE BE 

AMELIORATED? 

YES 

YES 

CONSIDER STOCKING FOR 

RESTORATION 

CONSIDER STOCKING FOR 

RESTORATION IN CONJUNCTION 

WITH REHABILITATION MEASURES 

NO 

NO
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ARE THERE MECHANISMS FOR 

ELIMINATING THE POTENTIAL 

IMPACTS? 
SEE NOTES ON LOOK-UP BOX A6 

EVALUATE THE POTENTIAL IMPACT OF 

STOCKING ON WILD FISH, BIOTA AND 

HABITAT OF RECEIVING WATER 

DEVELOP ALTERNATIVE STRATEGIES 
RETURN TO LOOK-UP BOX A3 

YES 

LOOK-UP BOX A4: RISK ASSESSMENT 

ARE THERE POTENTIAL ECOLOGICAL 

IMPLICATIONS OF STOCKING? 
GO TO LOOK-UP BOX A6 

NO 

YES 

SUMMARISE BIOLOGICAL INFORMATION ON 

SPECIES TO BE STOCKED 

ARE THERE ANY BIOGEOGRAPHICAL OR 

HISTORICAL REASONS WHY THE STOCKING 

SHOULD NOT TAKE PLACE? 

ARE THERE POTENTIAL GENETIC 

IMPLICATIONS OF STOCKING? 
GO TO LOOK-UP BOX A7 

ARE THERE POTENTIAL DISEASE, 
PATHOGEN AND TRANSFERENCE OF NON-

TARGET SPECIES IMPLICATIONS OF 

STOCKING? 
GO TO LOOK-UP BOX A8 

NO 

NO 

NO 

YES 

YES 

ARE THERE MECHANISMS FOR 

ELIMINATING THE POTENTIAL 

IMPACTS? 
SEE NOTES ON LOOK-UP BOX A7 

ARE THERE MECHANISMS FOR 

ELIMINATING THE POTENTIAL 

IMPACTS? 
SEE NOTES ON LOOK-UP BOX A8 

NO 

NO 

NO 

REVIEW IMPLEMENTATION CONTRAINTS 
GO TO LOOK-UP BOX A9 
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Finally, if it is possible to remove or minimise the causes of declines in fisheries, this 
course of action should be taken, and the fisheries may then recover without 
stocking. Habitat improvement is the most desirable option because it should lead to 
long-term sustainable improvements with minimal deleterious ecological impacts. It is 
also an efficient use of resources because it may have greater long-term benefits than 
enhancement stocking and also other conservation and ecological benefits (e.g. improved 
primary or secondary production). In cases where natural recovery may be ineffective 
because, for example, spawning stocks have been reduced to an apparently critically low 
level, restoration stocking may be appropriate to promote stock recruitment. Restoration 
stocking may also be desirable (either once rehabilitation is complete or simultaneously with 
it) to accelerate fishery recovery or to maintain local interest and momentum in fishery 
rehabilitation. 

To aid the decision-making process, a technique commonly employed in development 
project formulation, the logical framework (Table A1), can be used. This approach is useful 
in setting out the design of stocking programmes in a clear and logical way so that any 
weaknesses that exist can be addressed at an early stage, or if these are insurmountable, 
the programmes can be aborted. The logical project framework approach emphasizes the 
value of choosing measurable indicators that can be assessed through the life of the project, 
and instructs the managers to assess carefully the risks and assumptions on which the 
project is based. 

Indicators are used to determine the extent to which the objectives are being achieved and 
can be measured at different times, notabably in the monitoring of project performance 
(stocking success), appraisal and evaluation phases. Where possible, the indicators 
should define the target groups, quantities, quality, time and location. The section devoted to 
risks and assumptions of the logical framework is concerned with establishing realistic 
parameters of the environment in which the project is to function. Table A1 illustrates a 
project framework format that might be adopted at the onset of a project. 

Starting with the aim of the project, a series of objectives, outputs and inputs are developed 
down the first column at the left-hand side of the page. The second column addresses the 
indicators that have been determined at the outset of the project and how they can be 
verified as the project is developed further through the various phases of the project 
approach. The final column assesses the risks and assumptions that underpin the elements 
described in the first two columns. As the project develops so the logical framework will be 
modified to account for new information likely to affect the project elements. 

In the theoretical example (Table A1), embodied in the overall development aim is a familiar 
theme associated with recreational fisheries. A certain stretch of river is deemed to have 
deteriorated in productivity as a recreational fishery. The concerns of the local angling 
community have been transmitted to the river manager. If the aim and objectives of the 
logical framework are considered (Table A1), the recommended course of action is 
restocking. However, the chances of success are limited if the original development aim is to 
be pursued. Thus, to commit scarce resources to this project aim will probably result in only 
short-term and easily dissipated benefits. In essence, the anglers would welcome the 
restocking but this action would very likely not contribute to any lasting improvement in the 
‘quality’ of the fishery. In the assumptions/risks (Table A1), attention is drawn to the 
perceived nature of the problem and the question of the value of restocking as a corrective 
measure. At this stage the project planners might reject this option, re-examine it from a 
different perspective or re-orientate the project to address the problem of the perceived poor 
quality of the recreational fishery. 
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Table A1. Logical framework example 

Project Structure Indicators/Means of verification Assumptions/Risks 

Overall Development Aim:   

Improve by stocking the angling 
quality of a 10 km stretch of 
River X. 

More fish sightings.  

Better angling results.  

Wider variety of species caught. 

That the problem is 'real' and 
not merely perceived.  

That stocking is a viable method 
of improving the angling 
productivity of the river. 

Specific Objectives:   

Assess the current status of fish 
populations. 

Determine the biomass of fishes 
that might be stocked.  

Determine the species mix of 
fishes that should be stocked. 

Assess other factors that might 
be affecting the productivity of 
the fishery. 

Biomass per m2 of indigenous 
fishes assessed pre- and post-
stocking. 

Determination of biomass of key 
'sports fish' species. 

Assessment of predator/prey, 
etc., relationships between fish 
species. 

Assessment of water quality 
parameters, history of fish 
diseases, etc. 

That the rivers can be 
effectively sampled. 

That the methods of population 
assessment are appropriate 
and results are reliable.  

That the predator/prey, water 
quality, etc., relationships can 
be elucidated to determine their 
effects on the fisheries. 

Outputs:   

Improved knowledge of 
biology/distribution of fishes. 

Increased and / or maintained 
biomass of fishes available to 
anglers. 

Improved relationship with local 
angling clubs. 

Pre/post-stocking assessments 
to determine density of 
indigenous/stocked fishes. 
Monitoring of (match) angling 
results.  

Monitoring of level of public 
(angler) complaints about 
fishing. 

Monitoring of changes in 
numbers/frequency of anglers 
fishing 10 km stretch of river. 

Monitoring of changes in the 
level of legal infringements by 
anglers. 

That the stocked fishes survive 
in the river. 

That the stocked fish population 
does not dissipate. 

That other (angling) species do 
not suffer as a result of 
restocking.  

That there is a tangible 
relationship between anglers’ 
complaints and the quality of 
the river fishery. 

Inputs:   

3 man-month survey of 10-km 
stretch of river prior to stocking. 

10-km stretch stocked with y 
tonnes of fish species a, b, c. 

3 man-month survey of 10-km 
stretch of river post-stocking. 

 That the resources are available 
to undertake the survey work 
properly. 

That cost-effective and disease-
free fishes are available for 
stocking. 

That pre/post-stocking surveys 
are compatible. 
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4.2.3 Risks and uncertainty (see Look-up Boxes A4 and A5) 

Before any stock enhancement programme is implemented, a thorough assessment of the 
risks associated with the exercise must be undertaken (Look-up Box A4). Where stocking 
has taken place in the recent past it is possible to circumvent the main risk assessment and 
utilise knowledge about the outcomes of previous stocking events (Lookup Box A5). Risk 
assessment is used to determine the likelihood that an event may occur and what the 
consequences of such an event will be. A risk management framework operates by 
establishing the context (i.e. stocking event), identifying the risks on the existing situation 
(consequence and likelihood), assessing the risks and treating the risks. A measure of risk is 
typically derived by multiplying likelihood by consequence. A risk matrix, based on the 
International Council for the Exploration of the Sea (ICES) Code of Conduct for Species 
Introduction (after Campbell, 2006), is used to determine the level of risk (Table A2). The 
ratings refer to the probability (likelihood) of the impact (consequence) occurring if a species 
is stocked in a water based on attributes about the ecology of the species and the 
environment into which the species is being released. The likelihood of an event occurring 
according to the ratings in Table A2 is defined in Table A3. The consequence refers to the 
scale of the potential impacts based on knowledge of ecological interactions between the 
species to be stocked and those in the receiving water. The ratings are, where possible, 
based on scientific evidence, otherwise expert judgment is required. The latter introduces a 
level of uncertainty into the assessment procedure that must be accounted for. As a 
consequence, there is a need to introduce a further layer to the matrix that accounts for 
uncertainty in the knowledge base or processes in nature (Table A4). Where knowledge is 
deficient or uncertainty high, the precautionary principle should apply to prevent unforeseen 
impacts. 

 

Table A2. Risk matrix. N = negligible; L = low, M = moderate; H = high; E = extreme. 

Consequence  
Likelihood Insignificant Minor Moderate Major Significant 
Rare N L L M M 
Unlikely N L M H H 
Possible N L H H E 
Likely N M H E E 
Almost certain N M E E E 

One further element associated with risk is the degree of isolation of the receiving water. For 
example, an internal, fully recirculatory aquaculture unit will carry minimal risk compared with 
a stocking directly into a river or lake with no form of containment. Consequently, as part of 
the assessment procedure a weighting factor can be applied to the scoring system to reflect 
the degree of isolation (Table A5). 

 

Table A3. Likelihood rating. 

Likelihood Description % 
Rare Event will only occur in exceptional circumstances <5 
Unlikely Event could occur but not expected 25 
Possible Event could occur 50 
Likely Event will probably occur in most circumstances 75 
Almost certain Event is expected to occur in most circumstances >95 
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Table A4. Weighting to account for uncertainty about potential risks from stocking. (Note 
weightings are arbitrarily defined in this example and should be set to reflect the scale risk 
likely to accrue from the event. 

Degree of 
certainty 

Description Weighting 

High Well-established knowledge from existing stock 
enhancement programmes 

0.5 

Medium Knowledge from limited stock enhancement 
programmes supported by documented ecological 
and environmental studies 

1.0 

Low Little or no previous knowledge from stock 
enhancement programmes and little or no 
supporting ecological and environmental studies 

3.0 

 

HAS THE SPECIES BEEN 

STOCKED PREVIOUSLY? 

FULL RISK ASSESSMENT 

PROTOCOL 
GO TO LOOK-UP BOX A5 

HAVE THE OUTCOMES OF 

THE STOCKING EVENT 

BEEN ASSESSED? 

WAS ANY IMPACT OF THE 

STOCKING DETECTED? 

YES 

 NO 

LOOK-UP BOX A5: ASSESSMENT OF PREVIOUS STOCKING EVENTS 

DID THE STOCKING 

ACHIEVE ITS OBJECTIVES? 

YES 

YES 

 NO 

DEVELOP STOCKING 
STRATEGY 

GO TO LOOK-UP BOX A9 
 NO 

YES 
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Table A5. Suggested weighting to account for degree of isolation of receiving water body. 

Degree of isolation of receiving water body Weighting 

Internal, fully recirculatory aquaculture unit 0.5 

Isolated still water or garden pond not prone to flooding 1.0 

Isolated still water or garden pond prone to flooding 1.5 

Still water linked to river or lake by temporary or permanent stream, 
but with screening of outlet 

2.0 

Still water linked to river or lake by temporary or permanent stream – 
no screening 

4.0 

Open water 5.0 

It should also be recognised that the risks associated with stock enhancement can be 
reduced by mitigatory actions such as quarantining or stocking with reproductively sterile 
fishes (e.g. triploids). If applied, these procedures should be weighted into the overall 
assessment. 

The risk assessment process addresses the major biological, environmental, and if 
necessary benefits to region economies (Look-up Box A4). With stocking, it should provide a 
standardised approach for evaluating the risk of genetic and ecological impacts as well as 
the potential for introducing non-target species, especially pathogens, which might impact on 
the native flora and fauna of the proposed receiving water. The following section provides 
generic guidelines on the procedures and decisions that must be taken when evaluating 
whether a stocking or introduction event should go ahead. These should be taken prior to 
applying for a licence to stock to ensure the actions are compatible with the ecological 
objectives of the receiving water body. 

In the first instance, an evaluation of previous stocking events should be carried out as this 
could potentially avoid in-depth risk assessments (Look-up Box A4). As part of the 
evaluation, the outcomes of previous events should be assessed and used to decide on the 
risk assessment procedures and derivation of stocking strategies. 

Should a stocking programme be considered, an evaluation of the potential impacts, 
proportionate to the size/level of risk of the programme, should be undertaken. This takes 
the form of a series of steps to review the possible ecological, genetic and disease 
interactions that may arise from the stocking or introduction. In the first instance, the biology 
of the species to be stocked or introduced, especially relative to the donor and receiving 
water bodies, should be collated as a baseline for comparison with the faunal status of the 
receiving water body. The native range and range changes caused by translocation or 
introduction events should be described to assess what factors limit the species in its native 
range and if the species is likely to breed naturally in the receiving water. The physiological 
tolerances (e.g. water quality, temperature, flow requirements, oxygen, salinity) at each life 
stage (early life stages, adult and reproductive stages) should be collated to assess whether 
the species will establish and thrive, survive or fail to survive. Other information to be 
collected relates to the species’ habitat, trophic position, reproductive preferences and limits, 
behavioural traits, migratory behaviour, growth characteristics and longevity, plus potential 
diseases and parasites. Much of this information may be available on FishBase 
(www.fishbase.org), but it should be supplemented to ensure the characteristics of the 
species relative to the donor and receiving waters are evaluated. These baseline inventory 
data are used to query the ecological, genetic and pathological risks from stocking or 
introduction on the native biota and receiving ecosystem. 
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PREDICT ECOLOGICAL RISKS (LOOK-UP BOX A6) 

Before a stocking (or introduction) is undertaken, the suitability of the recipient habitat should 
be assessed. Details of physico-chemical factors and environmental tolerances of the 
proposed species to be released should be included in the evaluation. Although this refers 
primarily to introducing a new species, it is also relevant to species translocated within its 
natural distribution range or into water bodies that are not commensurate with its expected 
ecological guild. Unsuitability of the receiving water habitats may be grounds for rejecting the 
proposal. If the proposal is to be implemented, the risks of ecological disruption must be 
assessed, together with levels of uncertainty (see Look-up Box 6). Issues to be examined 
include interactions through predation and competition, disruption of habitats, whether there 
will there be niche overlaps with native species and whether there will there be negative 
impacts on species of high conservation value. Food webs should be constructed using 
whatever information is available, and the potential effects of the stock enhancement 
activities on trophic structure evaluated. This would essentially provide an overview of the 
possible interactions among native and stocked/introduced species. If major gaps of 
understanding emerge from the above exercise, further research should be conducted on 
the system. This assessment is largely redundant where the species is being stocked to 
supplement existing stocks but may be of relevance where a species is introduced into a 
habitat that is not typical of its natural preferences, but within its natural distribution range. In 
this case there is the distinct possibility of disruption of food webs and predation as the 
species widens its niche breadth to accommodate the new habitat conditions. 

PREDICT GENETIC IMPACTS (LOOK-UP BOX A7) 

Genetic impacts through hybridisation, inbreeding and loss of genetic integrity can hamper 
the outcome of stock enhancement programmes. Evidence suggests that stocking, 
especially of farm-reared fishes, is a threat to the genetic integrity of wild populations 
through reproductive interactions (Section 3.3.5). Carvalho (1993) and Ryman et al. (1995) 
suggested that the release of fishes should aim to minimise genetically-based changes and 
to conserve genetic resources. Therefore, if there is a possibility of inbreeding, hybridisation 
or loss of genetic integrity the programme should be rejected or protocols, such as stocking 
with triploids, should be adopted to minimise the risk. 

PREDICT RISK OF DISEASES AND PARASITES (LOOK-UP BOX A8) 

There is currently a major concern over the spread and impacts of diseases and parasites 
related to stocking and introduction events, and there is a need to protect natural 
environments from unwanted pathogens. Minimising the risks of disease and parasite 
transference is one of the main criteria that must be achieved to maximise benefits. The 
MSFHI has an established protocol to assess the health risk posed by stocked fishes to wild 
stocks. Their role in checking and monitoring fish health and the registration of hatchery 
facilities is described on the Scottish Government webpage 
(http://www.scotland.gov.uk/Topics/marine/Fish-Shellfish/FHI) and detailed in the Section on 
Health Checks below. All fishes stocked into open waters must first be checked for a range 
of parasites and symptoms of clinical disease (the protocol operates at a set level of 
confidence of detection). The presence of any one of these pathogens or significant 
evidence of clinical disease is grounds for rejecting a proposed stocking operation. Fish 
movements to fully enclosed waters, where the risk of transfer to the wider environment is 
reduced, do not need a mandatory health check. However, agencies usually advise fishery 
managers to obtain a health check and insist on health checks for all movements. 

The acts of stocking and introduction, irrespective of whether they involve the transfer of 
pathogens, can elevate the risks of fish disease. Hence, it is equally important to identify the 
disease potential of stocks in the receiving water and whether and how this might change as 
a result of stocking (see Look-up box A8). 
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ARE THERE MECHANSIMS FOR 

REDUCING OR ELIMINATING THE 

POTENTIAL IMPACTS?  
SEE NOTE 2 

EVALUATE THE POTENTIAL ECOLOGICAL 

IMPACT OF STOCKING ON WILD FISH, BIOTA 

AND HABITAT OF RECEIVING WATER 

DEVELOP ALTERNATIVE STRAGEGIES 
RETURN TO LOOK-UP BOX A3 

YES 

LOOK-UP BOX A6: ECOLOGICAL RISK ASSESSMENT 

ARE THERE POTENTIAL UNACCEPTABLE 

ECOLOGICAL IMPLICATIONS OF STOCKING?  

ASSESS THE LIKELIHOOD OF THE 

FOLLOWING ECOLOGICAL IMPACTS 

OCCURRING 

 disturbance of the local 
environment 

 intra- and inter-specific interactions 
 predation 
 species reduction 
 species extinction 

SEE NOTE 1 

ARE THERE POTENTIAL GENETIC 

IMPLICATIONS OF STOCKING? 
GO TO LOOK-UP BOX A7 

NO 
YES

NO 

NOTE 1: Use baseline inventory data to score the potential ecological impacts according to the table below. 
The assessment is made using the protocol described in Section A2.2. If the score in any column exceeds 8 
either seek mitigatory measures or reject the proposal. 
NOTE 2: If the score is high consider possible mechanisms for eliminating or reducing the risk to an 
acceptable level as described in Section A2.3. 
 Likelihood Consequence Note 3 Certainty Score 
 Column 1 Column 2 Column 3 = [(1 + 2) * 3] 
Disturbance of the 
local environment 

    

Intra- and inter-specific 
interactions 

    

Predation     
Species reduction     
Species extinction     
 1 = negligible  

2 = low  
3 = moderate  
4 = high 
5 = extreme 

1 = negligible  
2 = low  
3 = moderate 
4 = high 
5 = extreme 

1 = very certain 
2 = reasonably 
certain 
3 = reasonably 
uncertain 
4 = uncertain 

Total score =  

NOTE 3: Where the stocking is into a designated (e.g. SAC, SSSI) water body the scoring for consequences 
can be weighted to reflect the conservation sensitivity of the receiving water body. 
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ARE THERE MECHANISMS FOR 

ELIMINATING OR REDUCING THE 

POTENTIAL IMPACTS? 
SEE NOTE 2 

EVALUATE THE POTENTIAL GENETIC 

IMPACTS OF STOCKING ON WILD 

FISHES AND BIOTA OF RECEIVING 

DEVELOP ALTERNATIVE STRATEGIES 
RETURN TO LOOK-UP BOX A3 

YES 

LOOK-UP BOX A7: GENETIC RISK ASSESSMENT 

ARE THERE POTENTIAL 

UNACCEPTABLE GENETIC 

IMPLICATIONS OF STOCKING?  

ASSESS THE LIKELIHOOD OF THE 

FOLLOWING GENETIC IMPACTS 

OCCURRING 

 hybridization 
 disruption of local genetic 

adaptations 
 loss of genetic integrity 
 impacts resulting from use of 

polyploidy animals 
SEE NOTE 1 

ARE THERE POTENTIAL PATHOGEN, DISEASE AND 

TRANSFERENCE OF NON-TARGET SPECIES 

IMPLICATIONS OF STOCKING?  
GO TO LOOK-UP BOX A8 

NO 
YES

NO 

NOTE 1: Use baseline inventory data to score the potential genetic impacts according to the table below. 
The assessment is made using the protocol described in Section A2.2. If the score in any column exceeds 8 
either seek mitigatory measures or reject the proposal. 

NOTE 2: If the score is high consider possible mechanisms for eliminating or reducing the risk to an 
acceptable level as described in Section A2.3. 

 Likelihood Consequence Certainty Score 
 Column 1 Column 2 Column 3 = [(1 + 2) * 3] 

Hybridization     
Disruption of local genetic 
adaptations 

    

Loss of genetic integrity     
Impacts resulting from use 
of polyploidy animals 

    

 1 = negligible  
2 = low  
3 = moderate  
4 = high 
5 = extreme 

1 = negligible  
2 = low  
3 = moderate 
4 = high 
5 = extreme 

1 = very certain 
2 = reasonably 
certain 
3 = reasonably 
uncertain 
4 - uncertain 

Total score =  
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ARE THERE MECHANISMS FOR 

ELIMINATING THE POTENTIAL 

IMPACTS? 
SEE NOTE 2 

EVALUATE THE POTENTIAL DISEASE AND 

PATHOGEN IMPACTS OF STOCKING ON WILD 

FISHES AND BIOTA OF RECEIVING WATER

DEVELOP ALTERNATIVE STRATEGIES 
RETURN TO LOOK-UP BOX A3 

YES 

LOOK-UP BOX A8: TRANSFERENCE OF DISEASES, PATHOGENS AND 
NON-TARGET SPECIES RISK ASSESSMENT 

ARE THERE POTENTIAL PATHOGEN 

AND DISEASE IMPLICATIONS OF 

STOCKING?  

ASSESS THE LIKELIHOOD OF THE 

FOLLOWING IMPACTS OCCURRING 
 Transference of diseases and 

pathogens 
 Transference of non-target 

organisms 
SEE NOTE 1 

REVIEW IMPLEMENTATION 

CONTRAINTS  
GO TO LOOK-UP BOX A9 

NO 
YES

NO 

NOTE 1: Use baseline inventory data to score the potential impacts of introducing diseases, pathogens or 
non-target organisms according to the table below. The assessment is made using the protocol described in 
Section A2.2. If the score in any column exceeds 8 either seek mitigatory measures or reject the proposal. 

NOTE 2: If the score is high consider possible mechanisms for eliminating or reducing the risk to an 
acceptable level as described in Section A2.3. 

 Likelihood Consequence Certainty Score 
 Column 1 Column 2 Column 3 = [(1 + 2) * 3] 

Transference of diseases 
and pathogens 

    

Transference of non-target 
organisms 

    

 1 = negligible  
2 = low  
3 = moderate  
4 = high 
5 = extreme 

1 = negligible  
2 = low  
3 = moderate 
4 = high 
5 = extreme 

1 = very certain 
2 = reasonably 
certain 
3 = reasonably 
uncertain 
4 - uncertain 

Total score =  
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A2.4 Risk minimisation practices 

Stock enhancement programmes are widespread and can be substantial. Indeed, without 
stock enhancement programmes it is likely that many fisheries would collapse, which could 
also have social and economic repercussions. Consequently, fisheries and stocking 
practices cannot be curtailed, but need to be managed on a more strategic basis. However, 
there is evidence to suggest that many of these practices are carried out indiscriminately. 
Furthermore, stocking is an expensive method for managing fish stocks, and it also involves 
risks that should be assessed before the stocking is approved. Thus, there is a need for a 
mechanism or protocol to improve the efficacy of stocking operations. There are a number of 
flow charts that aid this process (Section A3.2), but these need to integrate a greater 
understanding of the undesirable effects of stocking and introductions to aid the decision of 
whether or not to stock. The decision trees in Look-up Boxes A4 to A8 provide for this, and 
the process outlined should be used as a template, in conjunction with other issues on 
genetics and disease control discussed later, to minimise the harmful effects of stocking 
(and introductions) and maximise the success of the ventures. 

MINIMISING ECOLOGICAL RISKS 

Stocking or introducing any species is accompanied by the risk of corrupting native fish 
communities and the fisheries they support through predation, competition, disease, 
hybridisation and adverse environmental impacts. The protocol that underlies this report 
effectively guides the proposer through the information that must be acquired and the issues 
that must be addressed if a proposal to stock or introduce is to be considered. The most 
effective mechanism to minimise the ecological risks of stocking or introductions is to 
produce an impact statement based on known ecological impacts from elsewhere or 
predicted impacts based on ecological knowledge of the species and biodiversity of the 
recipient water body. The degree of scrutiny required for the impact statement will depend 
on whether the water has been stocked in the recent (last five years) past, the scale of the 
stocking event and the presence of any conservation species or features of ecological 
interest. A series of generic impact statements for the most commonly stocked species can 
be used in many cases but tuned to the specific stocking programme being assessed. 

It should be noted that it is highly unlikely that any proposal for stocking or introducing a 
species into new environments can be evaluated to the full. There is no definitive rule of how 
a species that occupies a certain niche in an unmanaged system or how a previously 
unstocked system will react when stocked to a higher biomass or numerical abundance in 
the same or new environments. Consequently, the risks are potentially high, and the only 
certainty is that the stocking or introduction could affect the ecosystem in some, unknown, 
manner through predation, competition, habitat degradation or impacts on other biota. 
Consequently, every effort should be made to prevent the introduction of fish species into 
areas beyond their natural range, or indeed the translocation of fish species to uncolonized 
waters within their natural range. Legislation should be put into place and all government 
agencies should be advised to encourage the use of endemic species for stock 
enhancement programmes. In the case of England and Wales, the EA’s operational 
instructions ensure that non-native species (except for carp and rainbow trout) are only 
stocked into enclosed waters, where potential impacts can be contained and more easily 
managed than in open waters. A similar protocol exists for Scotland that identifies criteria 
that must be satisfied before a species can be considered acceptable by the Scottish 
Government for stocking into a particular water body in Scotland. The decision matrix is 
provided in Table 3 of the review.   

MECHANISMS FOR MINIMISING GENETIC DIFFERENCES 

There is a need to develop strategies that will minimise the genetic effects of cultured fishes 
and introduced strains on wild stocks in recipient water bodies. A number of such measures 
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have been identified in relation to hatchery practice and fish releases (Ryman, 1981; Ståhl & 
Hindar, 1988; Allendorf, 1991; Bergan et al., 1991; Hindar et al., 1991; Waples, 1991; 
Hindar, 1992; Cowx, 1999). The following provides some mechanisms that should be 
adopted in relation to hatchery-reared fishes: 

 closed culture – this provides secure containment of farmed fishes, for example in land-
based operations. 

 avoid stocking with species or strains genetically close to those in the receiving water. 
 avoid species that have the potential to breed. 
 sterilisation – this is an easily induced way of avoiding direct genetic effects, for example 

through the use of triploid fishes. 
 location – locating fish farms far from wild populations, and choosing locations for 

ranching that minimise straying and may reduce gene flow to wild populations. 
 reduced or selective fishing – native populations can be protected by reducing fishing 

pressure or by directing that pressure towards cultured fishes. 
 restrictions on transport – the spread of non-native genes and diseases is reduced by 

restricting transport of live fishes and eggs.. 
 gene banks – extinction of local populations can be counteracted by the establishment of 

gene banks. 

Artificial propagation of fishes has proceeded with good intentions, including rehabilitation or 
supplementation of wild populations and production of food fisheries. The consequences, 
however, have often been unforeseen and at times overlooked. Since aquaculture for both 
stocking/introduction and domestic supply is likely to continue, mechanisms to minimise any 
negative effects are necessary. These include the following. 

Minimise genetic difference. Minimising the genetic difference between cultured and wild 
populations will not stem gene flow, but is a potentially effective means of reducing its 
negative effects. Many of the methods for accomplishing this, however, are not without 
problems. For instance, establishment of hatchery broodstocks from local rather than foreign 
populations will not prevent the apparently inevitable divergence of the cultured population 
from its wild genotype. Each generation of cultured fish will undergo unintentional artificial 
selection. Incorporation of wild fishes from local populations into the hatchery broodstock 
each year may help solve this problem, but the hatchery may become a sink for wild 
populations, with wild fish being constantly removed to supply the hatchery. Moreover, it will 
not prevent the harmful effects of mixing gene pools (see Hindar et al., 1991; Waples, 1991). 
Supportive breeding or supplementation of wild populations, where a fraction of the wild 
adults are brought into the hatchery for artificial reproduction and their offspring released 
back into the natal stream, is also problematic as it can lead to reductions in the genetically 
effective population size, and depletion of genetic variability (Ryman & Laikre, 1991). 

Maximise divergence from the wild phenotype. Domesticating fishes to the point where they 
are unable to breed successfully in the wild, or for farmed fishes even to the point where 
they are unable to survive in the wild, are likely to be effective means of reducing or 
eliminating genetic threats. The majority of animals that have been thoroughly domesticated 
are unable to survive in the wild or successfully breed with wild populations (Hemmer, 1990). 
This strategy could also be effective in reducing or eliminating ecological interactions when 
cultured fishes are unable to breed successfully among themselves in the wild or establish 
feral populations that could ecologically threaten wild populations. While there could be 
practical problems when trying to implement this option, particularly for ranching, it would 
allow breeding programmes to concentrate on developing fish specially adapted to local 
aquaculture environments and thus potentially increase economic benefits to farmers (e.g. 
Doyle et al., 1991). 
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Minimising the spread of parasites and diseases 

Minimising the inadvertent introduction or transfer of parasites and diseases is an important 
aspect of any movement of fishes. Many examples of the translocation of parasites and 
diseases have been identified, although the impacts of these are rarely evaluated in 
economic or ecological terms. Irrespective, the risks associated with the transfer of 
parasites and diseases are high, and measures that minimise or eliminate these 
problems should be introduced. Three possible strategies exist (Kohler & Stanley, 1984; 
EIFAC, 1988; DeKinkelin & Hedrick, 1991): 

 improved control over fish movements through legislation; 
 veterinary inspections and health checks; 
 quarantining. 

LEGISLATION 

Improved control over fish movements is essential to stem the continuing dispersal of 
pathogens and the accidental introduction of fishes with consignments of target species. 
This can only be achieved by improving the understanding of the consequences of 
introducing and translocating fishes and other aquatic organisms. The EU is likely to play an 
active role in this respect under the EU regulation No 708/2007 ‘concerning the use of 
alien and locally absent species in aquaculture (Council of Europe 10922/5/06 rev 5), 
Council Directive 2006/88/EC of 24 October 2006 on animal health requirements for 
aquaculture animals and products thereof, and on the prevention and control of certain 
diseases in aquatic animals, and the Fish Health Directive (Council of Europe 14117/2/05). 
Also Directive 93/53/EEC introduces minimum EU measures for the control of List I and II 
diseases (defined below) (see Diseases of Fish (Control) Regulations 1994 (SI 1994/1447)). 

The main provisions are: 

 a list of diseases and susceptible aquaculture species; 
 approval of farming zones on the basis of this list; 
 a principle of freedom of trade between approved zones; 
 the obligation to monitor zones and record species introduced; 
 a possible protective clause; 
 equivalent rules for aquaculture animals or products imported from third countries to be 

introduced into Community waters. 

Generally, three criteria are relevant to the control of diseases: the species to be moved, and 
the places of origin and destination of the fishes or fish products. The regulation centres on 
the following: establishment of health status zones according to the presence or absence of 
specified fish diseases; protection from contamination of approved zones of the EU free of 
the more serious fish diseases; and the free movement of live fishes and shellfish between 
farms and zones of equivalent health status. 

Directive 91/67/EEC categorises fish diseases into three groups: List I encompasses 
potentially serious diseases not presently found in the EU; List II, highly infectious or 
contagious diseases with major economic impacts found in certain areas of the EU; and List 
III, infectious diseases with less severe economic impacts. Directive 91/67/EEC focuses on 
preventing both the introduction of List I diseases into the EU, and the spread of List II 
diseases beyond those areas presently affected. 

Ornamental tropical fishes destined to remain permanently in aquaria may be moved freely 
around the EU without the need for movement documents. Otherwise, species with 
appropriate documentation that are or are not susceptible either to List I or II diseases may 
be moved providing specified criteria are met. 
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Farmed or wild fishes susceptible to infectious haematopoietic necrosis (IHN) or viral 
haemorrhagic septicaemia (VHS), as well as wild fishes, eggs and gametes of non-
susceptible species, may only be imported from approved zones. The eggs or gametes of 
farmed or wild fishes susceptible to IHN or VHS may only be imported from other approved 
zones or approved farms in non-approved zones. Farmed fishes, eggs and gametes of non-
susceptible species may only be imported from other approved zones, approved farms in 
non-approved zones or from farms in non-approved zones that do not hold susceptible 
species and that are not connected to any watercourse, coastal or estuarial waters. 

HEALTH CHECKS 

Veterinary inspections/health checks form an essential element of all fish movements. Such 
checks should be mandatory for all movements to reduce the disease risk associated with 
stocking and introductions, including where fishes are being stocked into fully enclosed 
stillwaters. The latter is important because fishes may later be moved from fully enclosed 
stillwaters to other water bodies or escape during extreme floods, and could become a 
pathogen source. It is recommended that all health checks are carried out by competent and 
approved authorities. The checks should be based on the source stocks and water bodies 
(including testing of sympatric species) and not at the point of release. The role of the 
MSFHI in checking and monitoring fish health and the registration of hatchery facilities is 
described on the Scottish government webpage 
(http://www.scotland.gov.uk/Topics/marine/Fish-Shellfish/FHI). 

The fish health criteria forming the basis of a refusal to consent to stock should include: 

 introductions from sites subject to movement restrictions under the Diseases of Fish Act 
(1937) (and 1983, as amended) or the EC Fish Health Directive.  

 where a health check indicates that either: 
 a Category 1 disease is present; 
 a Category 2 disease is present in the source water; or 
 fishes in the source water or consignment to be released are either clinically 

diseased or show signs of clinical disease. 
 where there is a significant risk of infecting farmed stocks of Atlantic salmon within the 

immediate vicinity of the receiving site with IPN. 

QUARANTINING 

Quarantine is usually defined as the placing of organisms under observation, in isolation, 
whereby their disease and/or parasite status can be assessed and controlled prior to 
release. This is not the only method of minimising risks, however. Many other procedures 
can greatly enhance safety, regardless of whether the organisms are kept in isolation. A 
somewhat broader interpretation of ‘quarantine’ should therefore be applied to imply a 
process by which risks are minimised, whether or not the organisms are actually kept in 
isolation for any period (i.e. kept “in quarantine”). 

Quarantine procedures should be applied if and when there is a risk of introducing or 
transferring non-native diseases and/or parasites, whether identifiable or not, together with 
the organisms in question. The actual procedures recommended depend very much on the 
disease history of the stocks in question, the expertise available at the point of origin of the 
stocks, the degree of confidence in the abilities of the exporting agency, and the expertise 
and facilities available at the destination of the stock to be moved. The safest quarantine 
strategy is not to move any organisms at all; everything else involves risks. The purpose of 
an effective quarantine strategy is to minimise the risks as far as is possible, whilst still 
enabling the movement, and eventual release, of the organisms. In the UK, quarantining is 
an option rarely chosen when the origin of stocking material is within the country. Instead, 
restrictions on movement are usually affected if a health check on the source population 
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proves positive for a pathogen. Nevertheless, quarantining may come into effect if the fishes 
destined for stocking or introduction are imported. In such cases, health checks are the 
primary strategy for preventing the spread of diseases, but quarantining in secure units may 
be necessary if there is doubt over the origin and health status of the material. 

 

A2.5 Cost and revenue considerations (Look-up Boxes A9a and Ab) 

In any proposal, the overall costs and benefits of the stocking programme should be 
evaluated to ensure that the outcomes are justified in terms of benefits to the locality or 
region. Benefits relate to the outcomes of stocking events and include: 

 harvested yields; 
 opportunity of employment; 
 changes in fishery status; 
 recreational benefits (income, employment); and 
 benefits to conservation of endangered species. 

Analyses of this type are critical to ensure benefits accrue to the local economies 
commensurate with the risks to the environment. A simple assessment of this nature should 
also highlight stocking programmes that have little tangible benefit and reduce the number of 
unnecessary stocking events. 

 

A.3 Generic strategies for improving stocking success 

Guidelines for stocking and introducing fishes are available in many countries (e.g. EIFAC, 
1988; ICES, 2005). These are often species-specific or relate to particular types of water 
bodies. The main issues and options covered in these guidelines have been summarized by 
Cowx (1994b) and are illustrated in Figure 1. Cowx (1994b) further identified a series of 
resource problems in project planning that should be assessed, plus other critical conditions 
that need to be met to ensure successful stocking (Fig. A1). This step-wise approach to 
planning and implementing stocking programmes ensures that the main ecological and 
practical aspects are addressed at an early stage. 

Essentially, the strategy identifies the mechanisms by which the objectives for stocking 
programmes will be achieved. Appropriate implementation strategies are essential if stocking 
programmes are to be a success. The issues that must be considered include: 

 source of fishes;  
 size of fishes; 
 stocking densities; 
 species of fishes; 
 mechanisms and timing of release; 
 pre-conditioning and acclimatisation; and 
 handling and transportation. 

 

All these aspects must be taken into account and documented at the planning stage of the 
exercise to maximise the benefits and minimise any potential risks. 
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Determine optimal stocking
density of target species

Determine age/size structure
of stock to be introduced

Identify most cost-effective
stocking mechanism

Determine carrying
capacity of the system

Evaluate current
status of fishery

including disease
status

Identify source of fish
for stocking, assess

disease status

Are sufficient fish available
to meet demands and

mechanism of stocking?

Are any problems likely to
arise from disease?

Do fish need reconditioning?

Precondition

Environmental / ecological /
genetic risk assessment

No

Yes

Yes

No
No

Yes

 

Figure A1. Flow chart illustrating the resource problems that must be considered when 
planning a stocking exercise (from Cowx, 1994b). 
 

A3.1 Source of fishes 

There is an increasing awareness of the importance of maintaining genetic integrity of fish 
stocks. Consideration should therefore be given to minimising the dilution of genetic variation 
by indiscriminate stocking policies with fishes of unknown origin. Before implementing a 
stocking programme, a number of options relating to the source of the fishes should be 
considered. 
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OPTIONS FOR SYSTEMS WHERE THE SPECIES IS EXTINCT 

 donor stock from a system with the same biological characteristics as the recipient 
system. 

 receiving water should be as close to the original site as possible, and preferably within 
the same catchment 

 genetic variability is assured by using a large number of broodstock (see FRS/MS 
guidance on stocking: Hatchery Work in Support of Salmon Fisheries Scottish Fisheries 
Research Report No..65 2007 and Salmon and Sea Trout: To Stock or Not? Scottish 
Fisheries Information Pamphlet No. 22 2003). 

 stock chosen from a lake or part of a river with a similar environment (e.g. size of stream, 
gradient, water temperature, flow regime, altitude, profile). 

 artificial propagation based on stock from i) or ii) (sufficient fishes should be used as 
broodstock to avoid reducing genetic variability of the species). 

Whenever possible, stock enhancment programmes for systems where the species is extinct 
should follow the IUCN and JNCC guidelines. 

OPTIONS FOR DEPLETED OR RELICT STOCKS 

 build up of stock by hatchery production based entirely on local stock and return brood 
stock to home system. 

 redistribution of adults from elsewhere in the catchment (may be unsuited for introduction 
to other parts with different prevailing conditions). 

 choose stock from a system with a similar environment. 

OPTIONS FOR WATER BODIES WHERE NEW SPECIES TO BE INTRODUCED 

 farm-reared fishes, certified disease-free. 
 stocks from lakes or parts of rivers with similar environments that have been quarantined 

and certified clear of parasites and diseases alien to recipient system. 
 no obvious ecological problems likely to be caused – as with introductions of predators. 

Stocked fishes should not have been reared in captivity for more than one generation, to 
limit the possible effects of selection within hatcheries, thus particular care must be taken 
when obtaining fishes from hatcheries. 

 

A3.2 Size of fishes 

Selection of the size of fishes to be stocked or introduced requires knowledge of their likely 
impacts on native fishes and the ecosystem in general, together with a cost-benefit analysis. 
The significance of the size or age of fishes released is most apparent for species that 
undergo size-related or ontogenetic shifts in feeding behaviour or habitat use. For instance, 
many fish species are initially planktivorous, but switch to piscivory or benthivory with 
development (Werner & Gilliam, 1984; Vilizzi, 1998; García-Berthou, 2002; King, 2005; 
Tonkin et al., 2006; Nunn et al., 2007a, 2008b). The size or age of fish released therefore 
determines the position they occupy in the food web and, hence, their impacts upon 
ecosystem functioning and trophic status. Many trout species consume zooplankton and 
benthic macroinvertebrates when young, but may become increasingly piscivorous as they 
grow, which may have implications for ecosystem functioning. Releasing fishes at small 
sizes should reduce the incidence of piscivory and aggressive behaviour towards wild fishes. 
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In terms of cost-benefit, two main factors influence the size chosen for stocking material: 
cost and survival. The release of fishes at smaller sizes risks higher mortality, but the cost of 
stocking material increases exponentially with fish size, especially in slow-growing species, 
because fewer fishes are needed to obtain the same amount of additional catch from 
stocking when the size of released fishes is increased. However, this must be balanced 
against the uncertainty in fishery yield and, hence, economic yield from stocking, which 
decreases as a function of fish size. It is generally thought that there is a transition size 
(juvenile bottleneck) after which the yield from stocking is changed from unpredictable to 
predictable and the uncertainty is lowered considerably. The actual size chosen depends on 
an empirically determined balance between these two factors, unless there is some feature 
of the biology of the species that determines the size at which the fishes have to be stocked. 

In principle, the size that optimizes the yield from stocking (benefits) in relation to cost of the 
activity should be preferred. The optimum size to give the maximum benefit should be 
determined for all stocking programmes. In fisheries where exploitation is well managed, and 
the fishes allowed to achieve a reasonable size before being exploited, the optimum size is 
probably somewhere in the early juvenile period. However, if fisheries are poorly managed 
and the exploitation of young fishes is intense, this point is probably in the larval period 
because the production costs of the stocking material are much lower. 

With the exception of salmon (Table A6), few data are available on the success of stocking 
different sizes or life stages of fishes. However, the general trend is that migratory and 
anadromous fishes, such as salmonids, are usually stocked at young life stages (fry) to allow 
them to acclimate to the natal river and prepare for migration as their size increases. 
Cyprinids and other non-migratory forms are generally stocked at a larger stage (fingerlings 
~ 12 cm) as they are often supplementing a failure in natural recruitment. These fishes are 
expected to grow on to a large size based on the natural productivity of the stocked water 
body. 

Table A6. Performance of stocking salmon into rivers at different densities and life stages 
(data from Cowx, 1994b and references therein). 

Stage Density m-2 % survival to end 
of growing season 

Estimated smolt 
production 100 m-2 

Green ova 6.2-59.0 1.7-4.0 4.3-10.0 
Eyed ova 0.4-11.0 3.5-19.4 8.8-48.5 
Unfed fry 0.3-29.3 1.3-38.6 3.3-96.5 
Fed fry 0.1-1.8 6.7-22.7 2.5-56.8 

 

Recreational fisheries are increasingly tending to rely on even larger fishes of catchable size 
and less on growth in the natural environment. Specialist fisheries stock large-sized 
individuals to attract anglers, who are willing to pay high prices to capture specimen-sized 
fishes, particularly carp. Indeed, many fisheries in France and the UK are deliberately 
stocked with carp greater than 10 kg in weight. Put-and-take trout fisheries also stock with 
table-sized fish as these individuals are given little opportunity to increase in size. It is 
estimated that more than 80% of captures occur in the first 40 days after stocking, with 
overwinter survival of uncaught fishes being low. 

 

A3.3 Stocking densities  

One of the greatest concerns with stock enhancement programmes is that they rarely 
consider the capacity of the recipient system to support the enhanced stocks (Kelly-Quinn & 
Bracken, 1989). If too many fishes are present, increased mortality rates, through predation 
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and starvation, reduced growth rates and increased dispersion, generally follow. Thus, whilst 
stocking and introduction may produce large increases in fish numbers at certain times or in 
localised areas, no more fish will survive than the resources will allow. Evidence for such a 
competitive bottleneck has been provided by Hegge et al. (1993), where the capacity for 
enhancing trout stocks in a stream was limited by benthic feeding conditions. In worst-case 
scenarios, overstocking can lead to reductions in the performance of fisheries, below that 
prior to the introductions. For example, when the spawning stock of salmon exceeds an 
optimal level, the number of smolts produced may decrease (SAC, 1991). For fisheries 
already subjected to stocking activities, reducing stocking densities should reduce the 
potential for competitive interactions between native and stocked fishes, as pressure for 
finite resources is reduced. This is of particular importance for water bodies that support 
unique strains of brown trout, charr and whitefish. Reducing stocking densities should also 
minimise any detrimental impacts on the ecosystem as a whole. 

Determination of optimal stocking densities should be based of assessment of the carrying 
capacity of the receiving water body, and be commensurate with the risk and scale of the 
stocking programmes. For lakes, the optimal density can be determined from relationships 
between environmental parameters such as shore-line development and water depth and 
fish biomass (Leopold & Bninska, 1984). This has been further developed by Medley & 
Lorenzen (2006) to estimate optimal stocking density for culture-based fisheries. 
Unfortunately this model relates to fisheries where stocks are exploited, and not necessarily 
to recreational put-and-take or catch-and-release fisheries, where densities are often kept 
artificially high to increase angler satisfaction. No definitive relationships are available for 
calculating stocking densities of different species in rivers; these are generally based on the 
experience of the fishery managers. Hickley (1994) suggested that a database could be 
produced to provide guidance on the stocking densities that maximise the benefits in terms 
of improving stocks. Such a database should be based on the measured success of stocking 
at different densities. Thus, effort is required to construct tables to indicate the success of 
stocking of all species at different densities. This can only be achieved if the outcomes of 
stocking programmes are evaluated and reported. When calculating stocking densities, 
consideration must be given to the existing stock biomass, the residual stock remaining from 
previous stocking events, and allowances should be given for migration/dispersal, predation 
and predicted survival of the stocked fishes. Values of between 10 and 80% annual mortality 
are given in the literature (EIFAC, 1984), so compensatory densities will be difficult to 
determine. The most important issue is that overstocking is avoided. 

 

A3.4 Species of fishes 

The impacts of stock enhancement programmes on the recipient water bodies depend partly 
upon the species of fish released (see Cambray, 2003; Gozlan, 2008). For example, there is 
evidence that zander can have significant impacts on fish populations (Linfield & Rickards, 
1976; Fickling & Lee, 1983; Linfield, 1984; Hickley, 1986; Smith et al., 1998). Indeed, the 
introduction of zander into Lake Egridir, Turkey, resulted in the worldwide extinction of two 
endemic Phoxinellus spp. and considerable declines in the biomass of other cyprinid 
populations (Celikkale, 1990). Similarly, declines in a number of populations of whitefish 
species, including the powan in Loch Lomond, are thought to have been partly due to the 
spread of ruffe, which may feed on their eggs (Adams & Tippett, 1991; Ogle, 1998; Winfield 
et al., 1998; Etheridge et al., 2011), and trout (or trout farming) are believed to have had 
negative impacts on a number of Scottish natural heritage sites (e.g. Lake of Menteith, 
Lindores Loch, Butterstone Loch; Section 3.6). Stocking may also lead to undesirable 
changes in habitat that may impact on the populations of indigenous species the programme 
is designed to enhance. For example, the introduction of grass carp may greatly reduce the 
growth of aquatic macrophytes (Cross, 1969; Stott, 1977), which may be reflected in the 
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productivity of other species that use the vegetation either directly or indirectly. Moreover, by 
selectively feeding on soft-leaved species, grass carp can lead to an increase in the biomass 
of tougher (ligninous) species, which may be more of a nuisance than the macrophytes 
originally targeted for control (Wells et al., 2003). 

The stocking or introduction of piscivorous fishes can initiate trophic cascades that decrease 
phytoplankton biomass and increase water clarity (Geist et al., 1993; Frankiewicz et al., 
1996, 1999; Berg, 1998; Dörner et al., 1999; Dörner & Benndorf, 2003; Radke et al., 2003; 
Skov et al., 2003; Skov & Nilsson, 2007). However, if stocked or introduced fishes are 
zooplanktivorous, increased zooplanktivory may decrease the abundance of large-bodied 
zooplankton (e.g. Daphnia spp.), and result in an increased biomass of algae and lower 
water transparency. Elser et al. (1995) examined the effects of discontinuing the stocking of 
rainbow trout on food-web interactions and ecosystem properties (e.g. light penetration, 
primary productivity) in an oligotrophic lake (Castle Lake, USA). Contrary to their 
expectations, the reduction of rainbow trout abundance resulted in compensatory increases 
in the abundance of other zooplanktivorous fishes, with consequent increases in planktivory 
on daphnids, increased algal biomass and decreased water clarity. 

The selection of fish species to stock or introduce should therefore be based upon 
knowledge of their likely impacts on native fishes and the ecosystem in general. Species that 
are ecologically similar to native fishes are most likely to compete for resources, whereas 
dissimilar species may potentially alter ecosystem functioning through occupation of vacant 
niches. Stocking triploids has the potential to avoid inter-breeding between stocked and 
native fishes. This is of particular importance for water bodies that support unique strains of 
species. However, triploids may interfere with the post-spawning recovery of wild fishes. 

 

A3.5 Mechanism and timing of release 

There is a considerable volume of literature on the most appropriate time to stock or 
introduce salmonids in terms of maximising stocking success. The general conclusion is that 
stocking in the spring is more efficient (4-12 times) than in the winter (Cresswell, 1981; Aass, 
1993; O’Grady, 1984). Ideally, fishes should be released when flow rates and water 
temperatures are low, to minimise fish displacement and stress. In addition, releases should 
preferably take place when the productivity of the receiving water body is high, but not during 
the spawning period as the released fishes may interfere with natural reproduction 
processes. Stocking in early summer, after the coarse fish spawning season and when 
natural food availability is high, is preferable to allow the fishes to acclimatise to conditions in 
the receiving water body before overwintering. 

There is less information on the effects of time of release on the dynamics of receiving water 
bodies. An exception is Hembre & Megard (2005), who investigated how the timing (autumn 
versus spring) of rainbow trout stocking affected ecosystem functioning in a Minnesota lake. 
Daphnia spp. were almost eliminated from the lake during winters after trout were stocked in 
the autumn. Stocking in spring alleviated predation over the winter, but increased predation 
on Daphnia spp. during the spring, summer and autumn. However, the high mortality caused 
by spring-stocked trout was offset by higher rates of reproduction by the relatively large 
populations of fecund Daphnia spp. that survived the winter. Grazing by dense populations 
of Daphnia spp. increased water clarity during May and June that were inhibited in autumn-
stocking years. 

Three mechanisms for releasing fishes are used, namely spot planting (releasing all the fish 
in a single batch), scatter planting (simultaneously releasing batches of fish at several 
locations) and trickle planting (releasing batches of fish over an extended time period) 
(Cowx, 1994a). Spot planting can lead to competition amongst released fishes and with 
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native stocks, and in rivers is often associated with downstream displacement of fishes 
(Cresswell, 1981). Scatter planting minimises the potential for competitive interactions by 
reducing overdispersion of released fishes. Similarly, trickle planting minimises the potential 
for competition, but is often constrained by lack of manpower, finance and available stock. 
Evidence suggests that, in terms of stocking success, scatter and trickle planting should be 
preferred over spot planting (Berg & Jorgensen, 1991; Fjellheim et al., 1993). There appears 
to be little information regarding the effects of these mechanisms of release on the receiving 
water body, but it could perhaps be assumed that impacts would be greatest following spot 
planting, due to the artificially high and localised fish densities associated with this practice. 

The favoured mechanism of release should be trickle planting, as it has the potential to 
reduce both competition with native fishes and impacts on the ecosystem in general by 
releasing batches of fish over an extended time period. However, if manpower, finance or 
available stock are limited, scatter planting could be employed, with batches of fish released 
simultaneously at several locations. This technique reduces the potential for competitive 
interactions by minimising overdispersion of the released fish (Berg & Jorgensen, 1991; 
Fjellheim et al., 1993). 

 

A3.6 Pre-conditioning and acclimatisation 

As previously discussed, pre-conditioning fishes to prevailing conditions in the receiving 
water body potentially improves their survival. For example, fishes that are farm-reared or 
are to be transferred from still to running water should be exposed to running-water 
conditions for an extended period before their release. This exercises the red-muscle tissue 
in the fish, increasing their ability for sustained swimming (Broughton et al., 1981; Fisher & 
Broughton, 1984). Acclimatisation to temperature is also thought to be important (Philippart 
& Baras, 1988). More importantly, pre-conditioning exposes the fishes to the natural habitat 
characteristics and instils life skills to help avoid predation and improve feeding success. It is 
recognised, however, that pre-conditioning and acclimatisation may not be possible in many 
situations. 

 

A3.7 Handling and transportation 

Handling and transportation causes stress and possibly damage to fishes, which can 
subsequently affect post-stocking survival. As a result, procedures that minimise handling 
time or frequency should be adopted from the time of capture of the donor fishes to planting 
into the recipient system. Berka (1986) provided an overview of the procedures for 
transportation of fishes. These procedures should be applied each time fishes are moved, 
especially over long distances or for extended periods of time. 

 The techniques employed to capture the fishes in the first instance should cause minimal 
damage; seine netting and electric fishing are the preferred techniques. During 
collection and transportation, handling should be avoided where possible. Fishes should 
be transported in low densities and provided with an ample supply of oxygenated water. 

 All fishes should be starved for at least 24 hours prior to transportation to reduce oxygen 
demand, due to increased respiration rates during digestion, and minimise ammonia 
production. If the fishes are to be transported long distances consideration should be 
given to reducing the effective toxicity of unionised ammonia by lowering the 
temperature and pH. 

 The use of suitable anaesthetics should be considered to reduce physical activity and 
hence both the risk of damage and rate of respiration. 
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 There is no point in stocking fishes that are in poor condition or health, as this will affect 
the success of the stocking programme. 

 

A3.8 Assess feasibility and acceptability of stocking programme (Look-up Box A9) 

Stocking is an important tool in the management of fisheries, but the feasibility or 
practicability of proposed stocking programmes must be assessed, commensurate with the 
size of the stock enhancement programmes and/or the associated risks, before they are 
allowed to go ahead. Assessments should be based on a brief study that examines whether 
the objectives and defined outcomes of the stock enhancement programmes are achievable 
within socially acceptable environmental, genetic and ecological levels of risk. In essence, 
the proponents of stock enhancement programmes should provide a summary report that 
includes basic information about the recipient water body, physico-chemical information 
about flash and normal flooding time, duration, water level, water and soil conditions, water-
body management system, inlet and outlet channels, fishermen access trends, fish 
community structure and abundance, fish migration routes and any conservation-related 
issues. This information should be used to appraise the potential benefits and impacts and 
associated risks from stocking on the receiving ecosystem and associated biota. The various 
issues that need attention are highlighted in Look-up Box A9. In cases where the potential 
risks and uncertainty about the impacts and benefits are high, an independent appraisal 
should be conducted. Much of the data can be provided in a generic form once the initial 
stocking or similar event has been appraised. When evaluating stocking proposals, the “do 
nothing” option should not be disregarded but should be considered as fully as any of the 
other options under discussion, despite possible public pressure to stock. Generally, it would 
be expected that all stocking programmes should be economically viable and contribute to 
the well-being of the stocks. Unfortunately, financially-driven enhancement programmes are 
rarely successful because the returns in terms of increased yield (revenue) do not usually 
cover the costs of the stocking programmes. The ‘precautionary principle’ should be adopted 
if any adverse impacts are foreseen. 

If the decision-making authority approves the proposal, an executive plan (working plan) 
should be produced to implement the enhancement programme. All projects should have in 
place the methodology to enable adequate monitoring of progress and, ultimately, success 
or failure. This post-stocking appraisal should include a mechanism of disseminating the 
outcome to minimise the risks any unforeseen adverse effects in future exercises. 

 

A3.9 Post-stocking monitoring 

Integral with this process should be a post-stocking monitoring programme to measure the 
outcome of the intervention. Any measure of the success of a stocking programme will 
depend on the extent to which its objectives are realised. These may vary: for instance, 
when stocking commercial (capture) fisheries the usual measure is the extent to which the 
financial value of the catches is improved, whereas in recreational fisheries the criterion is a 
more elusive one of angler satisfaction. Whichever criterion is used, data on the stocking 
programme, including economic costs and benefits, are needed. Post-stocking monitoring 
programmes should also include fish health monitoring when the fishes are captured and 
species-specific harvesting data recorded by number and weight (Cowx, 1998c). 
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ARE THERE MECHANISMS 

FOR OVERCOMING THE 

CONSTRAINTS? 

EVALUATE THE IMPLEMENTATION CONSTRAINTS ON 

LIKELIHOOD OF STOCKING BEING SUCCESSFUL 

DEVELOP ALTERNATIVE STRATEGIES 
RETURN TO LOOK-UP BOX A3 

NO 

ASSESS THE LIKELIHOOD OF THE FOLLOWING 

CONSTRAINTS 

 availability of stocking material 
 transportation 
 quarantine facilities 
 institutional support 
 credit 
 ownership 

DEVISE AND IMPLEMENT STOCKING STRATEGY 
GO TO FIGURE A2 

YES 

NO 

DECISION BOX 1 

 Are the quality and quantity of fishes 
required for stocking available?  

 Is appropriate expertise and institutional 
support available? 

 Is appropriate financial support available? 
 Have the access rights been defined? 

DECISION BOX 2 

 Can ecological uncertainty be managed? 
 Are the fisheries risks acceptable? 
 Is the socio-economic uncertainty 

acceptable? 
 Is the implementation uncertainty 

acceptable? 

YES 

YES 

NO 

LOOK-UP BOX A9: REVIEW OF IMPLEMENTATION CONSTRAINTS 
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After implementation, it is desirable to evaluate stocking programmes on the basis of 
ecological, economic, genetic, disease and parasite risks and social aspects. In this context, 
an evaluation plan, proportionate to the scale and potential impacts of the stocking 
programme, should be prepared and executed. This should run over at least a 3-5-year 
period, preferably longer where intensive stocking or predatory species are concerned, and 
include technical, ecological, genetic and social considerations. The long-term holistic 
approach will assist in identifying and solving: 

 impacts on the habitats (e.g. loss of aquatic vegetation, changes in the composition of 
aquatic vegetation, increases in dissolved solids and turbidity) of recipient ecosystems; 

 impacts on the trophic dynamics of recipient ecosystems (e.g. changes in the quality and 
quantity of plankton communities, increases in single age groups of particular fish 
species, changes in the quality and quantity of benthic organisms); 

 changes in the genetic integrity of stocked/resident fish species (e.g. the presence of 
hybrids, deformed fishes, fish maturing earlier or later than conspecifics in similar water 
bodies, egg quality, survival of larvae and juveniles); 

 impacts of latent disease and parasites, which were not detected during quarantine; 
 changes in species and catch composition; 
 changes in growth performance of stocked/resident fish species; 
 changes in production trends of stocked/resident fish species; 
 changes in the socio-economic conditions of people related to the fisheries. 

This post-stocking appraisal should include a mechanism of disseminating the outcomes to 
highlight the risks of any unforeseen adverse effects in similar exercises. 
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Appendix 2. Stocking densities/biomasses reported for a number of fish species and life stages in various waterbodies. 

 

Species Life stage Waterbody Densities/Biomasses Comments References 

Atlantic 
salmon 

Green ova Various rivers 6.2-59.0 m-2 Estimated 4.3-10.0 smolts 100 m-2 Cowx (1994c) 

Atlantic 
salmon 

Eyed ova Various rivers 0.4-11.0 m-2 Estimated 8.8-48.5 smolts 100 m-2 Cowx (1994c) 

Atlantic 
salmon 

Eyed ova Various rivers, England 
and Wales 

1.70-4.50 m-2 Recommended densities for stocking to 
maximise smolt output, depending upon 
habitat quality 

Harris (1994), cited in 
Aprahamian et al. (2003) 

Atlantic 
salmon 

Ova and 
fry 

Various rivers, 
Scotland 

2-5 m-2 Recommended densities for stocking to 
maximise smolt output, depending upon 
habitat quality 

Egglishaw et al. (1984) , 
cited in Aprahamian et al. 
(2003) 

Atlantic 
salmon 

Fry (unfed) Various rivers 0.3-29.3 m-2 Estimated 3.3-96.5 smolts 100 m-2 Cowx (1994c) 

Atlantic 
salmon 

Fry (unfed) Various rivers, England 
and Wales 

1.70-4.0 m-2 Recommended densities for stocking to 
maximise smolt output, depending upon 
habitat quality 

Harris (1994), cited in 
Aprahamian et al. (2003) 

Atlantic 
salmon 

Fry Various rivers 0.1-1.8 m-2 Estimated 2.5-56.8 smolts 100 m-2 Cowx (1994c) 

Atlantic 
salmon 

Fry River Viantienjoki, 
Finland 

0.63-2.11 m-2 Point and scatter stocking in early June both 
appear to be suitable in small rivers 

Jokikokko (1999) 

Atlantic 
salmon 

Fry Various rivers, England 
and Wales 

0.60-1.80 m-2 Recommended densities for stocking to 
maximise smolt output, depending upon 
habitat quality 

Harris (1994), cited in 
Aprahamian et al. (2003) 

Atlantic 
salmon 

0+ parr Various rivers, England 
and Wales 

0.15-0.40 m-2 Recommended densities for stocking to 
maximise smolt output, depending upon 
habitat quality 

Harris (1994), cited in 
Aprahamian et al. (2003) 

Atlantic 
salmon 

1+ parr Various rivers, England 
and Wales 

0.05-0.20 m-2 Recommended densities for stocking to 
maximise smolt output, depending upon 
habitat quality 

Harris (1994), cited in 
Aprahamian et al. (2003) 
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Barbel Adult Four stillwaters, 
England (0.3-2.0 ha) 

>500 kg ha-1 Growth depressed when common carp 
present. Growth similar to  natural habitats 
when density <200 kg ha-1 and carp absent 

Taylor et al. (2004) 

Brook trout Adult Two oligotrophic lakes 
in northern Ontario, 
Canada 

2 kg ha-1 Significant increase in mean shoal sizes of 
potential prey species following stocking, no 
statistical changes in abundance or habitat 
use 

Pink et al. (2007) 

Brown trout Fry River Viantienjoki, 
Finland 

0.63-2.14 m-2 Point and scatter stocking in early June both 
appear to be suitable in small rivers 

Jokikokko (1999) 

Brown trout 1+ parr Various rivers, Poland 5 m-2 – Zalewski et al. (1985) 

Brown trout 0+ and 
>0+ 

Various rivers, 
Germany, Czech 
Republic, France and 
Finland 

Mean 2861 ha-1 
(range 0-8710 ha-1) 
and 119 kg ha-1 
(range 0-478 kg ha-1) 

Status of fish populations in 20 freshwater 
pearl mussel streams 

Geist et al. (2006) 

Coarse fish n/s Mature acid/neutral 
upland lakes/reservoirs 

100 kg ha-1 Approximate natural density. In waterbodies 
of high conservation value it may be 
necessary to restrict stocking to ensure that 
densities do not affect designated features 

EA (2006) 

Coarse fish n/s Recently created 
lakes/gravel pits 

150 kg ha-1 Approximate natural density. In waterbodies 
of high conservation value it may be 
necessary to restrict stocking to ensure that 
densities do not affect designated features 

EA (2006) 

Coarse fish n/s Mature gravel pits 250 kg ha-1 Approximate natural density. In waterbodies 
of high conservation value it may be 
necessary to restrict stocking to ensure that 
densities do not affect designated features 

EA (2006) 

Coarse fish n/s Mature lowland lakes 350 kg ha-1 Approximate natural density. In waterbodies 
of high conservation value it may be 
necessary to restrict stocking to ensure that 
densities do not affect designated features 

EA (2006) 
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Coarse fish n/s Eutrophic ponds 500 kg ha-1 Approximate natural density. In waterbodies 
of high conservation value it may be 
necessary to restrict stocking to ensure that 
densities do not affect designated features 

EA (2006) 

Coarse fish n/s New fisheries 150 kg ha-1 – IFM (1991) 

Coarse fish n/s Established fisheries 300-400 kg ha-1 – IFM (1991) 

Coarse fish n/s Nutrient-enriched 
shallow lakes 

<10-40 kg ha-1 >10-40 kg ha-1 likely to suppress Daphnia 
spp. populations and lead to increases in 
phytoplankton biomass 

Moss et al. (1996) 

Coarse fish n/s 280 stillwaters, 
England and Wales 

10 to 126 000 ha-1 
and <5 to >14 000 kg 
ha-1 

50% of fisheries contained <5000 ha-1 and 
<370 kg ha-1 

North (2001, 2002) 

Common carp Adult Mesocosms in four 
shallow 0.4 ha ponds, 
USA 

>174 kg ha-1 Increased turbidity, suspended solids and 
total phosphorus, reduced macrophyte and 
macroinvertebrate abundance 

Parkos et al. (2003) 

Common carp Adult Mesocosms in Little 
Mere, Cheshire, 
England (eutrophic, 1.5 
m max. depth) 

>200 kg ha-1 Adverse impacts on macrophytes Williams et al. (2002) 

n/s n/s n/s <100 kg ha-1 >100 kg ha-1 has strongly detrimental 
impacts (reduced biodiversity, loss of 
submerged plants, increased turbidity) 

SEPA (2000) 

Rainbow trout Adult Long Lake, Minnesota, 
USA (dimictic, 66.5 ha, 
7.63 × 106 m3, 2.4 km 
long, 24 m max. depth, 
13 m mean depth) 

~75 ha-1 Daphnia spp. nearly eliminated during 
winters after trout stocked in autumn. 
Impacts less severe for spring stocking 

Hembre & Megard (2005) 

Rainbow trout 
/brown trout 
/brook trout 

Adult Five meso-eutrophic 
lakes in Alberta, 
Canada (mean 19.5 
[range 3.3-28.8] ha, 
10.3 [range 6.0-12.5] m 
max. depth) 

Mean 495.4 (151-733) 
ha-1 

Forage fish largest in stocked lakes, 
consistent with size-limited predation. No 
demonstrable effects on abundance 

Nasmith et al. (2010) 
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Sea trout 0+ fry Afon Iwrch, Wales Trickle stocking at 
0.75 m-2 
recommended in 
September 

Estimated ~0.03 smolts m-2 Scott et al. (1997) , cited in 
Aprahamian et al. (2003) 

Sea trout Fry Various rivers, Wales 0.40-1.50 m-2 – Wyatt (1989); Hoggarth 
(1992); Hoggarth et al. 
(1992) , all cited in 
Aprahamian et al. (2003) 

Sea trout 1+ parr The Møbæk, Øster 
Velling bæk and 
Hjorthede bæk 
tributaries of the River 
Gudenå, Denmark 

1.0-2.0 m-2 Wild trout negatively affected by introduction 
of domestic trout and wild trout from another 
stream. Smolt yields at 2+ were 3.2% (for 0+ 
trout stocked in autumn) and 7.0% (for 1 + 
trout stocked in spring) of the domestic trout 
stocked 

Berg &Jorgensen (1991) 

Trout n/s n/s 75-100 kg ha-1 – IFM (1991) 

n/s = not stated 
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